Home > Press > Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ
A computer-generated image of three forms of cellulose, the 'scaffolding' of plant cell walls. CREDIT:IBM |
Abstract:
Scientists from IBM Research and the Universities of Melbourne and Queensland have moved a step closer to identifying the nanostructure of cellulose -- the basic structural component of plant cell walls.
The insights could pave the way for more disease resistant varieties of crops and increase the sustainability of the pulp, paper and fibre industry -- one of the main uses of cellulose.
Tapping into IBM's supercomputing power, researchers have been able to model the structure and dynamics of cellulose at the molecular level.
The work, which was described in a paper published in Plant Physiology, represents a significant step towards our understanding of cellulose biosynthesis and how plant cell walls assemble and function.
The research is part of a longer-term program at the Victorian Life Sciences Computation Initiative (VLSCI) to develop a 3D computer-simulated model of the entire plant wall.
Cellulose represents one of the most abundant organic compounds on earth with an estimated 180 billion tonnes produced by plants each year. A plant makes cellulose by linking simple units of glucose together to form chains, which are then bundled together to form fibres. These fibres then wrap around the cell as the major component of the plant cell wall, providing rigidity, flexibility and defence against internal and external stresses.
Until now, scientists have been challenged with detailing the structure of plant cell walls due to the complexity of the work and the invasive nature of traditional physical methods which often cause damage to the plant cells.
Dr John Wagner, Manager of Computational Sciences, IBM Research -- Australia, called it a 'pioneering project'.
"We are bringing IBM Research's expertise in computational biology, big data and smarter agriculture to bear in a large-scale, collaborative Australian science project with some of the brightest minds in the field. We are a keen supporter of the Victorian Life Sciences Computation Initiative and we're very excited to see the scientific impact this work is now having,"
Using the IBM Blue Gene/Q supercomputer at VLSCI, known as Avoca, scientists were able to perform the quadrillions of calculations required to model the motions of cellulose atoms.
The research shows that within the cellulose structure, there are between 18 and 24 chains present within an elementary microfibril, much less than the 36 chains that had previously been assumed.
Dr Monika Doblin, Research Fellow and Deputy Node Leader at the School of BioSciences at the University of Melbourne said cellulose is a vital part of the plant's structure, but its synthesis is yet to be fully understood.
"It's difficult to work on cellulose synthesis in vitro because once plant cells are broken open, most of the enzyme activity is lost, so we needed to find other approaches to study how it is made," Dr Doblin said.
"Thanks to IBM's expertise in molecular modelling and VLSCI's computational power, we have been able to create models of the plant wall at the molecular level which will lead to new levels of understanding about the formation of cellulose."
IBM Researcher, Dr. Daniel Oehme, said plant walls are the first barrier to disease pathogens.
"While we don't fully understand the molecular pathway of pathogen infection and plant response, we are exploring ways to manipulate the composition of the wall in order to make it more resistant to disease,"
###
The work was undertaken by biologists at the Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls within the universities of Melbourne and Queensland, in partnership with the IBM Research Collaboratory for Life Sciences.
Housed in the University of Melbourne's Victorian Life Sciences Computation Initiative, the Collaboratory was established to enable IBM and university researchers to work side by side on research in the areas of medicine and computational biology.
####
For more information, please click here
Contacts:
Jane Gardner
038-344-0181
Copyright © University of Melbourne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
To download the research paper visit:
To find out more about the Victorian Life Sciences Computation Initiative visit:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||