Home > Press > Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ
![]()  | 
| A computer-generated image of three forms of cellulose, the 'scaffolding' of plant cell walls. CREDIT:IBM  | 
Abstract:
Scientists from IBM Research and the Universities of Melbourne and Queensland have moved a step closer to identifying the nanostructure of cellulose -- the basic structural component of plant cell walls.
The insights could pave the way for more disease resistant varieties of crops and increase the sustainability of the pulp, paper and fibre industry -- one of the main uses of cellulose.
Tapping into IBM's supercomputing power, researchers have been able to model the structure and dynamics of cellulose at the molecular level.
The work, which was described in a paper published in Plant Physiology, represents a significant step towards our understanding of cellulose biosynthesis and how plant cell walls assemble and function.
The research is part of a longer-term program at the Victorian Life Sciences Computation Initiative (VLSCI) to develop a 3D computer-simulated model of the entire plant wall.
Cellulose represents one of the most abundant organic compounds on earth with an estimated 180 billion tonnes produced by plants each year. A plant makes cellulose by linking simple units of glucose together to form chains, which are then bundled together to form fibres. These fibres then wrap around the cell as the major component of the plant cell wall, providing rigidity, flexibility and defence against internal and external stresses.
Until now, scientists have been challenged with detailing the structure of plant cell walls due to the complexity of the work and the invasive nature of traditional physical methods which often cause damage to the plant cells.
Dr John Wagner, Manager of Computational Sciences, IBM Research -- Australia, called it a 'pioneering project'.
"We are bringing IBM Research's expertise in computational biology, big data and smarter agriculture to bear in a large-scale, collaborative Australian science project with some of the brightest minds in the field. We are a keen supporter of the Victorian Life Sciences Computation Initiative and we're very excited to see the scientific impact this work is now having,"
Using the IBM Blue Gene/Q supercomputer at VLSCI, known as Avoca, scientists were able to perform the quadrillions of calculations required to model the motions of cellulose atoms.
The research shows that within the cellulose structure, there are between 18 and 24 chains present within an elementary microfibril, much less than the 36 chains that had previously been assumed.
Dr Monika Doblin, Research Fellow and Deputy Node Leader at the School of BioSciences at the University of Melbourne said cellulose is a vital part of the plant's structure, but its synthesis is yet to be fully understood.
"It's difficult to work on cellulose synthesis in vitro because once plant cells are broken open, most of the enzyme activity is lost, so we needed to find other approaches to study how it is made," Dr Doblin said.
"Thanks to IBM's expertise in molecular modelling and VLSCI's computational power, we have been able to create models of the plant wall at the molecular level which will lead to new levels of understanding about the formation of cellulose."
IBM Researcher, Dr. Daniel Oehme, said plant walls are the first barrier to disease pathogens.
"While we don't fully understand the molecular pathway of pathogen infection and plant response, we are exploring ways to manipulate the composition of the wall in order to make it more resistant to disease,"
###
The work was undertaken by biologists at the Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls within the universities of Melbourne and Queensland, in partnership with the IBM Research Collaboratory for Life Sciences.
Housed in the University of Melbourne's Victorian Life Sciences Computation Initiative, the Collaboratory was established to enable IBM and university researchers to work side by side on research in the areas of medicine and computational biology.
####
For more information, please click here
Contacts:
Jane Gardner
038-344-0181
Copyright © University of Melbourne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
 To download the research paper visit:
 To find out more about the Victorian Life Sciences Computation Initiative visit:
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Food/Agriculture/Supplements
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
    Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Nanobiotechnology
    New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||