Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices

Abstract:
Iranian researchers studied the antibacterial properties of a type of ceramic nanoparticles which have proved to be an appropriate material for producing medical devices.

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices

Tehran, Iran | Posted on May 3rd, 2015

After carrying out complementary studies and obtaining desirable results, these nanoparticles enable the production of medical devices with the ability to eliminate bacteria and microbes.

One of the important issues in the production of medical devices nowadays is the application of materials with high mechanical and thermal strength as well as having appropriate antibacterial properties. Therefore, this study tries to study antibacterial properties of barium titanate ceramic nanoparticles.

Experiments carried out in this research showed that barium titanate nanoparticles with determined amount of zirconium show noticeable antibacterial properties. Therefore, it seems that these ceramic nanoparticles can be an appropriate option to be used in the production of medical devices.

The results are considered a significant approach in the laboratorial production and self-sufficiency of the country in the production of nano-ceramics with high mechanical and thermal strength, and their application in medical and pharmaceutical industries and in target drug delivery systems.

Results showed that these nanoparticles have acceptable antibacterial properties against this species. It was also turned out that bacteria that resist against some antibiotics are sensitive to this nanostructure. For instance, low concentrations of the synthesized nanoparticles can have stronger antibacterial effect in comparison with the common drugs such as kanamycin.

Results of the research have been published in Brazilian Journal of Microbiology, vol. 45, issue 4, 2014, pp. 1393-1399.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project