Home > Press > Polymeric Nanocarriers Improve Performance of Anticancer Drugs
Abstract:
Academic researchers in Iran used biodegradable polymers to produce drug nanocarriers able to carry and release a type of anticancer drug in cancerous cells.
The research was carried out to develop the applications of these types of drugs and produce and coat magnetic nanoparticles with biocompatible copolymers as an appropriate bed for doxorubicin anticancer drug.
According to the executor of the plan, the copolymer used in this research is biocompatible and non-toxic and can be degraded in the chemical atmosphere for the body. In addition, the loading of doxorubicin increases due to the ease of synthesis, the wide and controllable range of particle size, hydrophilicity and the ability to create physical and chemical bonds with the drug. These characteristics have resulted in an increase in the efficiency of the drug to the extent that significant increase is observed the release of this drug in cancerous cells in comparison with other reported products. This drug can be easily controlled due to its magnetic properties.
The mechanism of drug carrying nanosystems can be explained this way; nanoparticles can diffuse into the cell by passing through cellular blocks (such as membranes) due to their small size, and they increase the accumulation of the drug in the target tissue. This way, the toxicity of drugs decreases because only the target cells are affected. Therefore, no side effect is observed in other healthy tissues and the treatment period increases.
Results showed that due to their specific characteristics, including high LCST (low critical solution temperature), the copolymers are capable of loading and releasing the drugs in comparison with previous reported products such as poly (N-isopropylacrylamide). In addition, copolymers can be produced easily through this method and they do not require specific conditions. Moreover, they have acceptable compatibility with the environment and are degradable.
Results of the research have been published in Applied Surface Science, vol. 320, issue 1, 2014, pp. 301-308.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cancer
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |