Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unique microscopic images provide new insights into ionic liquids

The researchers use a special sample holder to investigate the ionic liquids under the microscope.
Photo/Copyright: Denis Schimmelpfennig
The researchers use a special sample holder to investigate the ionic liquids under the microscope.

Photo/Copyright: Denis Schimmelpfennig

Abstract:
To directly observe chemical processes in unusual, new materials is a scientific dream, made possible by modern microscopy methods: researchers at Kiel University have, for the first time, captured video images of the attachment of molecules in an ionic liquid onto a submerged electrode. The images from the nanoscale world provide detailed information on the way in which chemical components reorganise when a voltage is applied. New findings based on this information may lead to improved batteries and more energy efficient coating technology or solar engineering.

Unique microscopic images provide new insights into ionic liquids

Kiel, Germany | Posted on April 28th, 2015

Ionic liquids are organic salt melts, which may even be fluid at room temperature, although they contain no water. It is exactly this point that makes them so interesting for numerous experiments and industrial processes. This is because water is electrolytically dissociated at electrodes even at small voltages, which blankets and hinders other, technically important, electrochemical reactions. In addition, the water molecules encase the ions and interfere in numerous chemical processes. In ionic liquids, which consist of ions only, completely new reactions are therefore possible.

Ionic liquids have been a hot field of research in recent years, leading to the discovery of a whole range of new compounds. Their technological applications are manifold: As electrolytes in batteries, fuel cells or dye solar cells and as a galvanic bath for the deposition of thin aluminium coatings or semi-conductor materials. The fact that they operate at room temperature makes them easier to handle for numerous applications and saves energy on top.

However, at present almost no data are available on how electrochemical reactions in ionic liquids operate at the molecular level or how the molecules are arranged on the surface of the electrode. While in aqueous liquids this has been studied for decades by modern microscopy methods, similar studies in ionic liquids have been largely unsuccessful: “The molecules often simply move too fast for conventional instruments”, says Professor Olaf Magnussen of Kiel University. Using a self-built scanning tunnelling microscope his team was now able to track down this mystery.

Video sequences recorded by Magnussen's co-worker Dr Rui Wen reveal how the liquid's molecules, less than a nanometre in size, react when a voltage is applied to a gold electrode. If the surface is uncharged, the molecules display a response typical for liquids: they are disordered and highly mobile. As the voltage increases the molecules lay down flat on the surface and form rows, before they finally reorient to an erect arrangement. At the same time, they become less and less mobile. “The images are unique and help us to develop theories to better describe the electrode processes in ionic liquids”, says physicist Magnussen. “This is important not only for basic research, but also for concrete applications.”

To allow her to research at Kiel University, Rui Wen applied for a scholarship from the Alexander von Humboldt Foundation and the project was successfully approved. “The special microscopy method really attracted me to Kiel”, says Wen. In the two years she has been in Kiel Rui Wen, hailing from China, has investigated a whole range of ionic liquids, among others liquids with BMP ions, the topic of the recently published study. Battery researchers, in particular, are interested in BMP.

The Kiel research results may lead to a better understanding of ionic liquids and allow them to be tailored for more environmentally friendly production processes. For Rui Wen personally, the investigations have already paid off: She recently received an offer to establish her own working group at the Chinese Academy of Sciences in Beijing.

Full bibliographic information
Potential-dependent Adlayer Structure and Dynamics at the Ionic Liquid
/ Au(111) Interface: A Molecular Scale In Situ Video-STM study. Rui Wen, Björn Rahn, and Olaf. M. Magnussen. Angew. Chem. Int, Ed. DOI: 10.1002/anie.201501715

Potentialabhängige Struktur und Dynamik molekularer Adschichten an der Grenzfläche zwischen ionischen Flüssigkeiten und Au(111): Eine in situ Video-STM Studie. Rui Wen, Björn Rahn, and Olaf. M. Magnussen. Angew. Chem. DOI: 10.1002/ange.201501715

####

For more information, please click here

Contacts:
Boris Pawlowski

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video: Microscopic video images of a negatively charged gold electrode in an ionic liquid. The fluctuating square pattern is formed by the liquid's BMP molecules, which attach onto the metallic surface in an ordered arrangement under these conditions.

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Fuel Cells

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project