Home > Press > Expanding the reach of metallic glass
![]() |
Abstract:
Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.
Yale University engineers have found a unique method for designing metallic glass nanostructures across a wide range of chemicals. The process will enable the fabrication of an array of new materials, with applications for everything from fuel cells to biological implants.
“It’s a huge step for nanofabrication,” said Jan Schroers, professor of mechanical engineering and materials science at Yale, and co-author of a paper published online this week in the journal Nature Communications. “You really now have the entire toolbox to change how you make these glasses for other chemistries.”
Schroers and his team at Yale have spent years refining processes for designing metallic glass nanostructures — complex, multicomponent alloys that are constructed at the nano scale — within a limited number of alloy systems. Those materials can be molded much like plastic and already are being used in a variety of manufacturing applications, from watch parts to phone casings.
In the new paper, Schroers demonstrates a method for applying metallic glass nanostructures to a broad range of glass-forming alloys. The process involves depositing the material into the mold in vapor form, resulting in the ability to control the size, shape, and composition of alloys at the nanoscale.
“Controlling size and reaching the smallest ~10 nanometer dimensions — 1/10,000 of the diameter of a human hair — is something that we have demonstrated before,” Schroers said. “However, we could only do this for one, very specific chemistry. With our new method we can fabricate nanostructures similar in size but with even higher complexity in shape and realize all this in a very wide range of alloys.”
Expanding the chemistries of metallic glass also expands the possible uses for the materials, he notes. Manufacturers will be able to optimize the design to a desired electrochemical behavior for a battery or fuel cell, for example. Or they might alter materials for greater biocompatibility, temperature stability, or water resistance.
“This is like going from building boats only out of wood, to the ability to build boats out of almost any kind of material,” Schroers said.
The first author of the paper is Yanhui Liu, an associate research scientist at Yale. Other authors are assistant professor of mechanical engineering and materials science Judy Cha, postgraduate associate Sung Woo Sohn, and graduate student Yanglin Li, all from Yale.
The research was supported by a grant from the National Science Foundation.
####
For more information, please click here
Contacts:
Jim Shelton
203-432-3881
Copyright © Yale University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |