Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene reduces wear of alumina ceramic

The addition of graphene to alumina halves the wear ratecopyright Elsevier
The addition of graphene to alumina halves the wear rate

copyright Elsevier

Abstract:
Ceramics, hard crystalline solids, have been utilized by mankind for thousands of years, with earliest applications in pottery. In modern times, new ceramic materials were developed for use in advanced ceramic engineering, for example as semiconductors. One popular ceramic is alumina, an oxide of the metal aluminium.

Graphene reduces wear of alumina ceramic

San Sebastian, Spain | Posted on March 26th, 2015

Alumina has for a long time been used in biomedical applications such as load-bearing hip prostheses and dental implants, due to its high resistance to corrosion, low friction, high wear resistance and strength. As material science progresses and advanced materials penetrate into society, ceramics are also continuously being improved, especially in strength and durability.

In a most recent development, Graphenea researchers, together with collaborators from Russia and throughout Spain, have shown that the addition of graphene to alumina improves the ceramic's wear resistance and decreases friction. The result is expected to soon find its use in real products, as graphene and its derivatives seem to be biocompatible and in addition carry a low cost.

The paper entitled "Wear behavior of graphene/alumina composite", published in the journal Ceramics International, describes the study of dry sliding behavior of a graphene/alumina composite material and compares it to regular alumina. The wear rate of the advanced composite was 50% lower than that of pure alumina, while the friction coefficient was reduced by 10%. This finding is made even more astonishing by the fact that the concentration of graphene in the final product is only 0.22% by weight. The type of graphene used for the study is Graphenea's standard graphene oxide.

Graphene-enhanced alumina has in itself not been studied much, and in fact there are few examples in literature of tribological studies of any graphene-enhanced ceramics. Graphenea's team recently participated in a study that showed that the addition of a small amount of graphene to alumina makes the ceramic less prone to breaking under strain, while simultaneously improving electrical conductivity.

The present experiment measured wear and friction by sliding the graphene/alumina composite material over a simulated distance of 10km. The material is slid in a "tribometer", a machine that simulates sliding behavior by bouncing a ceramic (in this case also alumina) ball off the tested material. The tribometer precisely measures the friction and wear as it goes. Such test instruments are often used to study novel hip implant designs. The testing of the material in this standard industrial tribometer puts the research close to end-user products.

####

About Graphenea
Graphenea, headquartered at the nanotechnology cluster CIC nanoGune in San Sebastian, Spain, was established in 2010, and has since grown to be one of the world's largest providers of graphene. Graphenea employs 12 people and exports graphene materials tomore than 370 customers in 53 countries. The company has focused on developing the CVD growth and transfer method, reaching a consistently high quality of its graphene films that researchers can rely on. Graphenea employs a team of skilled laboratory staff who have brought graphene transfer techniques to a new level, offering the same high quality films on any substrate. Following the trends in cutting-edge research, Graphenea also produces chemically exfoliated graphene, in volumes up to 2,5 litres per package. Graphenea partners with large multinationals to develop custom graphene materials for their applications.

Its research agility and ability to keep pace with the progress of graphene science and technology has allowed Graphenea to become the largest graphene supplier in the Graphene Flagship, a ten year project of the European Commission worth a billion euros. The company keeps a close relation with the world's leading scientists, regularly publishing scientific articles of the highest level.

For more information, please click here

Contacts:
Headquarters
Graphenea
Avenida de Tolosa, 76
20018 - Donostia/San Sebastián
Spain

Copyright © Graphenea

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Dental

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project