Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UW scientists build a nanolaser using a single atomic sheet

The ultra-thin semiconductor, which is about 100,000 times thinner than a human hair, stretches across the top of the photonic cavity.
CREDIT: University of Washington
The ultra-thin semiconductor, which is about 100,000 times thinner than a human hair, stretches across the top of the photonic cavity.

CREDIT: University of Washington

Abstract:
University of Washington scientists have built a new nanometer-sized laser -- using the thinnest semiconductor available today -- that is energy efficient, easy to build and compatible with existing electronics.

UW scientists build a nanolaser using a single atomic sheet

Seattle, WA | Posted on March 24th, 2015

Lasers play essential roles in countless technologies, from medical therapies to metal cutters to electronic gadgets. But to meet modern needs in computation, communications, imaging and sensing, scientists are striving to create ever-smaller laser systems that also consume less energy.

The UW nanolaser, developed in collaboration with Stanford University, uses a tungsten-based semiconductor only three atoms thick as the "gain material" that emits light. The technology is described in a paper published in the March 16 online edition of Nature.

"This is a recently discovered, new type of semiconductor which is very thin and emits light efficiently," said Sanfeng Wu, lead author and a UW doctoral candidate in physics. "Researchers are making transistors, light-emitting diodes, and solar cells based on this material because of its properties. And now, nanolasers."

Nanolasers -- which are so small they can't be seen with the eye -- have the potential to be used in a wide range of applications from next-generation computing to implantable microchips that monitor health problems. But nanolasers so far haven't strayed far from the research lab.

Other nanolaser designs use gain materials that are either much thicker or that are embedded in the structure of the cavity that captures light. That makes them difficult to build and to integrate with modern electrical circuits and computing technologies.

The UW version, instead, uses a flat sheet that can be placed directly on top of a commonly used optical cavity, a tiny cave that confines and intensifies light. The ultrathin nature of the semiconductor -- made from a single layer of a tungsten-based molecule -- yields efficient coordination between the two key components of the laser.

The UW nanolaser requires only 27 nanowatts to kickstart its beam, which means it is very energy efficient.

Other advantages of the UW team's nanolaser are that it can be easily fabricated, and it can potentially work with silicon components common in modern electronics. Using a separate atomic sheet as the gain material offers versatility and the opportunity to more easily manipulate its properties.

"You can think of it as the difference between a cell phone where the SIM card is embedded into the phone versus one that's removable," said co-author Arka Majumdar, UW assistant professor of electrical engineering and of physics.

"When you're working with other materials, your gain medium is embedded and you can't change it. In our nanolasers, you can take the monolayer out or put it back, and it's much easier to change around," he said.

The researchers hope this and other recent innovations will enable them to produce an electrically-driven nanolaser that could open the door to using light, rather than electrons, to transfer information between computer chips and boards.

The current process can cause systems to overheat and wastes power, so companies such as Facebook, Oracle, HP, Google and Intel with massive data centers are keenly interested in more energy-efficient solutions.

Using photons rather than electrons to transfer that information would consume less energy and could enable next-generation computing that breaks current bandwidth and power limitations. The recently proven UW nanolaser technology is one step toward making optical computing and short distance optical communication a reality.

"We all want to make devices run faster with less energy consumption, so we need new technologies," said co-author Xiaodong Xu, UW associate professor of materials science and engineering and of physics. "The real innovation in this new approach of ours, compared to the old nanolasers, is that we're able to have scalability and more controls."

Still, there's more work to be done in the near future, Xu said. Next steps include investigating photon statistics to establish the coherent properties of the laser's light.

###

Co-authors are John Schaibley of the UW, Liefeng Feng of the UW and Tianjin University in China, Sonia Buckley and Jelena Vuckovic of Stanford University, Jiaqiang Yan and David G. Mandrus of Oak Ridge National Laboratory and the University of Tennessee, Fariba Hatami of Humboldt University in Berlin and Wang Yao of the University of Hong Kong.

Primary funding came from the Air Force Office of Scientific Research. Other funders include the National Science Foundation, the state of Washington through the Clean Energy Institute, the Presidential Early Award for Scientists and Engineers administered through the Office of Naval Research, the U.S. Department of Energy, and the European Commission.

Grant numbers: AFOSR (FA9550-14-1-0277), NSF-EFRI-1433496, ECS-9731293, N00014-08-1-0561, FP7-ICT-2013-613024-GRASP

####

For more information, please click here

Contacts:
Jennifer Langston

206-543-2580

Xiaodong Xu


Arka Majumdar

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project