Home > Press > First proof of isolated attosecond pulse generation at the carbon K-edge
![]() |
This image shows an attosecond emission steering with CEP phase. CREDIT: ICFO |
Abstract:
In a recent study, "Spatiotemporal isolation of attosecond pulses in the soft X-ray water window " published in Nature Communications by the Attoscience and Ultrafast Optics Group, led by ICREA Professor at ICFO Jens Biegert, the generation of isolated attosecond pulses at the carbon K-edge at 284 eV (4.4 nm), within the water window range, was achieved.
Carbon is one of the most abundant elements in the Universe and the building block of life on earth. It is a fundamental element for both organic compounds, such as cells, lipids, carbohydrates, as well as inorganic compounds, such as those used to fabricate carbon nanotubes, graphene, organic electronics and light harvesting devices.
The availability of attosecond duration (1as=10-18s) soft X-ray pulses means that one can follow electronic motion in real time and with element specificity, i.e. at the carbon edge. The time scales permit imaging the triggering events behind bond formation and breaking, the flow of energy in organic solar cells or energy storage devices, or the inner workings of ultrafast magnetic devices or superconductors. Such capability is key for designing new transformational materials with high efficiency or for the development of petahertz electronics.
Until now and after a decade of continuous research and development, attoscience has culminated in the generation of isolated attosecond pulses at photon energies below 120 eV, due to the stringent requirements concerning laser sources. Now, the Attoscience and Ultrafast Optics Group, led by ICREA Professor at ICFO Jens Biegert, has been able to take a considerable step forward by demonstrating, for the first time, the generation of the isolated attosecond pulses at the carbon K-edge at 284 eV (4.4 nm), in the soft X-ray water window. With their experimental setup, they were able to create these ultra-short pulses with pulse duration below 400as and a bandwidth supporting a 30-as pulse duration.
The water window refers to the fact that water is transparent to soft X-rays in the range between 530 eV/2.34 nm (K-absorption edge of oxygen) and 280 eV /4.4nm (K-absorption edge of carbon), while other elements are absorbing. Aside from the incredible attosecond time resolution, the table top realization at ICFO would permit soft X-ray microscopy on the atomic level of carbon containing compounds inside living compounds and specimens.
####
About ICFO-The Institute of Photonic Sciences
ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia as a centre of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists, and provide knowledge and technology transfer. Today, it is one of the top research centres worldwide in its category as measured by international rankings.
Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The institute hosts 300 professionals based in a dedicated building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.
ICFO participates in a large number of projects and international networks of excellence and is host to the NEST program which is financed by Fundación Privada Cellex Barcelona.
For more information, please click here
Contacts:
Alina Hirschmann
34-935-542-246
Copyright © ICFO-The Institute of Photonic Sciences
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Research group led by ICREA Prof. at ICFO Jens Biegert:
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |