Home > Press > New optical materials break digital connectivity barriers: Tel Aviv University researcher discovers novel nanoscale 'metamaterial' could serve as future ultra-high-speed computing units
Abstract:
From computers, tablets, and smartphones to cars, homes, and public transportation, our world is more digitally connected every day. The technology required to support the exchange of massive quantities of data is critical. That's why scientists and engineers are intent on developing faster computing units capable of supporting much larger amounts of data transfer and data processing.
A new study published in Nature Photonics by Tel Aviv University researchers finds that new optical materials could serve as the nuts and bolts of future ultra-high-speed optical computing units. According to the research, led by Dr. Tal Ellenbogen and conducted by group members Nadav Segal, Shay Keren-Zur, and Netta Hendler, all of the Department of Physical Electronics at TAU's School of Electrical Engineering and TAU's Center for Nanoscience and Nanotechnology, these "nonlinear metamaterials," which possess physical capabilities not found in nature, may be the building blocks that allow major companies like IBM and Intel to move from electronic to optical computing.
At his TAU lab, Dr. Ellenbogen studies the interaction between light and matter at the nanoscale level in order to explore underlying physical mechanisms, which can be used to develop novel optical and electro-optical components. "Optical metamaterials have been studied for their intriguing and unusual properties for the last 15 years," said Dr. Ellenbogen. "Our work shows that, with the proper design, they can also be used to develop new types of active optical components essential to the manufacture of ultra-high-speed optics-based computer chips."
Light and matter
In natural materials, the interaction between light and the material is governed by the chemical composition of the material. In the new optical materials, however, through the creation of fine nanostructures, the interaction can be controlled and new optical phenomena can be observed. When the strength of the interaction is not directly proportional to the strength of the light field, nonlinear optical effects kick in. These effects can be used to make active optical devices.
From electronics to photonics
These artificial optical materials are sometimes referred to as optical metamaterials and their nanoscale building blocks are sometimes referred to as "optical meta-atoms." "Future on-chip communications systems are expected to change from relying solely on electronics to relying on photonics -- that is, the qualities and mechanics of light -- or hybrid electronic-photonic systems," said Dr. Ellenbogen. "These photonic on-chip communications systems will consist of active nonlinear nanoscale optical elements. Our research opens the door to consider nonlinear metamaterials as the active nanoscale components in future on-chip communications.
"By merging two disciplines in optics -- metamaterials and nonlinear photonic crystals -- we are opening the door to constructing novel active nonlinear devices based on metamaterials and to new fundamental studies altogether," said Dr. Ellenbogen. The researchers are currently exploring how to make the nonlinear interaction more efficient by using multilayered metamaterial structures and by examining different metamaterial building blocks.
###
All of the research was conducted at the Laboratory for Nanoscale Electro-Optics at TAU's Center for Nanoscience and Nanotechnology, and was supported by the Israel Science Foundation, the European Commission Marie Curie Career Integration Grant, and the Tel-Aviv University Center for Renewable Energy. For this research Nadav Segal won the The Feder Family Award for Best Student Work in Communications.
####
About American Friends of Tel Aviv University
American Friends of Tel Aviv University supports Israel's most influential, most comprehensive and most sought-after center of higher learning, Tel Aviv University (TAU). US News & World Report's Best Global Universities Rankings rate TAU as #148 in the world, and the Times Higher Education World University Rankings rank TAU Israel's top university. It is one of a handful of elite international universities rated as the best producers of successful startups, and TAU alumni rank #9 in the world for the amount of American venture capital they attract.
A leader in the pan-disciplinary approach to education, TAU is internationally recognized for the scope and groundbreaking nature of its research and scholarship -- attracting world-class faculty and consistently producing cutting-edge work with profound implications for the future.
For more information, please click here
Contacts:
George Hunka
212-742-9070
Copyright © American Friends of Tel Aviv University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||