Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 30 years after C60: Fullerene chemistry with silicon: A long strived-for silicon dodecahedron synthesised at room temperature

The Platonic solid, which was published in "Angewandte Chemie," is not just aesthetically pleasing, it also opens up new perspectives for the semiconductor industry.
CREDIT: Goethe University
The Platonic solid, which was published in "Angewandte Chemie," is not just aesthetically pleasing, it also opens up new perspectives for the semiconductor industry.

CREDIT: Goethe University

Abstract:
The discovery of the soccer ball-shaped C60 molecule in 1985 was a milestone for the development of nanotechnology. In parallel with the fast-blooming field of research into carbon fullerenes, researchers have spent a long time trying in vain to create structurally similar silicon cages. Goethe University chemists have now managed to synthesise a compound featuring an Si20 dodecahedron. The Platonic solid, which was published in the "Angewandte Chemie" journal, is not just aesthetically pleasing, it also opens up new perspectives for the semiconductor industry.

30 years after C60: Fullerene chemistry with silicon: A long strived-for silicon dodecahedron synthesised at room temperature

Frankfurt, Germany | Posted on March 18th, 2015

The Si20 dodecahedron is roughly as large as the C60 molecule. However, there are some crucial differences between the types of bonding: All of the carbon atoms in C60 have a coordination number of three and form double bonds. In the silicon dodecahedron, in contrast, all atoms have a coordination number of four and are connected through single bonds, so that the molecule is also related to dodecahedrane (C20H20). "In its day, dodecahedrane was viewed as the 'Mount Everest' of organic chemistry, because it initially could only be synthesized through a 23- step sequence. In contrast, our Si20 cage can be created in one step starting from Si2 building blocks," explains Prof. Matthias Wagner of the Goethe University Institute of Inorganic and Analytical Chemistry.

The Si20 hollow bodies, which have been isolated by his PhD student, Jan Tillmann, are always filled with a chloride ion. The Frankfurt chemists therefore suppose that the cage forms itself around the anion, which thus has a structure-determining effect. On its surface, the cluster carries eight chlorine atoms and twelve Cl3Si groups. These have highly symmetric arrangements in space, which is why the molecule is particularly beautiful. Quantum chemical calculations carried out by Professor Max C. Holthausen's research group at Goethe University show that the substitution pattern that was observed experimentally indeed produces a pronounced stabilisation of the Si20 structure.

In future, Tillmann and Wagner are planning to use the surface-bound Cl3Si anchor groups to produce three dimensional nanonetworks out of Si20 units. The researchers are particularly interested in the application potential of this new compound: "Spatially strictly limited silicon nanoparticles display fundamentally different properties to conventional silicon wafers," explains Matthias Wagner. The long strived-for access to siladodecahedrane thus opens up the possibility of studying the fundamental electronic properties of cage-like Si nanoparticles compared to crystalline semiconductor silicon.

####

For more information, please click here

Contacts:
Dr. Matthias Wagner

Copyright © Goethe University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project