Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Predicting prostate cancer: Nanotechnology shows promise for more accurate prostate cancer screening and prognosis

Abstract:
A Northwestern University-led study in the emerging field of nanocytology could one day help men make better decisions about whether or not to undergo aggressive prostate cancer treatments.

Predicting prostate cancer: Nanotechnology shows promise for more accurate prostate cancer screening and prognosis

Evanston, IL | Posted on March 17th, 2015

Technology developed by Northwestern University researchers may help solve that quandary by allowing physicians to identify which nascent cancers are likely to escalate into potentially life-threatening malignancies and which ones will remain "indolent," or non-aggressive.

The prostate-specific antigen (PSA) test was once the recommended screening tool for detecting prostate cancer, but there is now disagreement over the use of this test because it can't predict which men with elevated PSA levels will actually develop an aggressive form of the disease.

"If we can predict a prognosis with our technology, then men will know if their cancer is dangerous and if they should seek treatment," said Vadim Backman, senior author of the study. "Right now there is no perfect tool to predict a prognosis for prostate cancer. Our research is preliminary, but it is promising and proves that the concept works."

Backman is a professor of biomedical engineering at Northwestern's McCormick School of Engineering and Applied Science.

The study, which includes researchers from Northwestern, NorthShore University HealthSystem (NorthShore) and Boston Medical Center, was published online in PLOS ONE.

Backman has been studying cell abnormalities at the nanoscale in many different types of cancers, using an optical technique he pioneered called partial wave spectroscopic (PWS) microscopy. PWS can detect cell features as small as 20 nanometers, uncovering differences in cells that otherwise appear normal using standard microscopy techniques.

His previous studies have shown promise that PWS can assess the risk of lung, colon and pancreatic cancers in humans. This sort of prescreening can lead to earlier, life-saving interventions. This is the first study to use PWS to predict a cancer prognosis, the likely course of the disease.

Prostate cancer is the second-leading cause of cancer deaths in American men, but doctors also say it is often overdiagnosed and overtreated. By age 80, more than 50 percent of men will develop prostate cancer but not all will have the aggressive, deadly form of the disease.

However, because their prognosis is unknown, many opt for aggressive treatments that have side effects that cause urinary, bowel and erectile dysfunctions and more.

"The goal is to find specific biomarkers of aggressive cancers," said Charles Brendler, MD, Co-Director of the John and Carol Walter Center for Urological Health & Program for Personalized Cancer Care at NorthShore and author of the study. "These biomarkers will allow us to individualize our treatment recommendations and improve patient outcomes."

To be able to give a patient a prognosis, not just identification of risk of tumors, would be a major advancement, said Dr. Hemant K. Roy professor of medicine and Chief of gastroenterology at Boston Medical Center and an author of the study.

"This approach may allow tailoring of clinical decisions regarding management of patients with prostate cancer, thus maximizing the benefit and minimizing the harms of therapy," Roy said.

In this study, researchers analyzed prostate tissue biopsies from two cohorts of prostate cancer patients. The first cohort included eight men with non-progressing cancer and 10 with progressing cancer. The PWS operator was blinded to the clinical status of the patients.

The second cohort was comprised of 10 progressors and 10 non-progressors in which the PWS investigators were blinded to the entire group.

There was a profound increase in nano-architectural disorder in the progressors as compared to the non-progressors. This assessment may represent a powerful biomarker to predict cancer progression for men with early-stage prostate cancer.

"This study has high quality data because it was done in a blinded fashion," Backman said. "Given that even in the unblinded dataset the investigator responsible for data acquisition was unaware of the clinical status, there is no possibility of bias."

More studies are planned to further this research. Backman also hopes to use similar techniques to predict cancer progression in ovarian, breast and esophageal cancers.

###

The study authors are Hemant K. Roy of Boston Medical Center; Charles B. Brendler, Karen L. Kaul, Brian T. Helfand, Chi-Hsiung Wang, Margo Quinn, Jacqueline Petkewicz and Michael Paterakos, of NorthShore University HealthSystem; and Hariharan Subramanian, Di Zhang, Charles Maneval, John Chandler, Leah Bowen and Vadim Backman, of Northwestern University.

####

For more information, please click here

Contacts:
Erin Spain

847-491-4888

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project