Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The taming of magnetic vortices: Unified theory for skyrmion-materials

Chiral magnetic materials promise a lot of new functionalities with an interesting interplay of electronic and magnetic properties. A team of physicists from Technische Universität München and University of Cologne succeeded in characterizing the electromagnetic properties of insulating, semiconducting and conducting skyrmion-materials and developed a unified theoretical description of their behavior.
CREDIT: Illustration: Christoph Hohmann / NIM
Chiral magnetic materials promise a lot of new functionalities with an interesting interplay of electronic and magnetic properties. A team of physicists from Technische Universität München and University of Cologne succeeded in characterizing the electromagnetic properties of insulating, semiconducting and conducting skyrmion-materials and developed a unified theoretical description of their behavior.

CREDIT: Illustration: Christoph Hohmann / NIM

Abstract:
More than six years ago, physicists at the Technische Universität München discovered extremely stable magnetic vortex structures in a metallic alloy of manganese and silicon. Since then, they have driven this technology further together with theoretical physicists from the University of Cologne.

The taming of magnetic vortices: Unified theory for skyrmion-materials

Muenchen, Germany | Posted on March 3rd, 2015

Since magnetic vortices are microscopic and easy to move, computer components may need 10,000 times less electricity than today with this technology and store much larger amounts of data. Recent research results showed that the unique electromagnetic properties of skyrmions could also be used for the construction of efficient and very small microwave receivers and transmitters.

Conductors, semiconductors and insulators

The production of computer chips requires insulating, semiconducting and conducting materials. Today, magnetic vortex structures are available for all these three classes of materials. An important advantage is that these vortices respond easily to alternating fields so that information can be processed at high rates. Now a team of physicists at the TU München, the University of Cologne and the École Polytechnique Fédérale de Lausanne (Switzerland) has examined the dynamic behavior of the three materials.

With the results of their measurements, the team developed a theoretical description of behavior valid for all three material classes. "With this theory, we have laid an important foundation for further developments," says Professor Dirk Grundler, Chair of Physics of Functional Multilayers at the TU München. "In the future, we will therefore be able to identify materials with the specific properties we need for functional devices."

Extremely compact frequency devices

The typical resonance frequencies of the skyrmions are in the microwave range - the frequency range of mobile phones, Wi-Fi and many types of microelectronic remote controls. Thanks to the robustness of the magnetic vortices and their ease of excitability, skyrmion-materials could be the basis for highly efficient microwave transmitters and receivers.

While the wavelength of electromagnetic microwaves typically lies in the range of centimeters, the wave lengths of the magnetic spin waves, so-called magnons, are 10,000 times shorter. "In the area of microelectronics, much more compact or even entirely new devices could be developed from magnetic nanomaterials such as the skyrmion-materials," says Grundler.

In addition to the material itself, its shape also significantly influences the electromagnetic properties of the device. Here, too, the researchers' newly developed theory is very useful. It can predict which form produces the best properties for which material.

"Chiral magnetic materials promise a lot of new functionalities with an interesting interplay of electronic and magnetic properties," says Dr. Markus Garst, a physicist at the Institute for Theoretical Physics at the University of Cologne. "But for all applications, it is essential to predict the possibilities and limitations of various materials. We have come a big step closer to achieving this goal."

###

The work was funded by the European Research Council (ERC Advanced Grant), the Deutsche Forschungsgemeinschaft (TRR 80, SFB 608 and Nanosystems Initiative Munich, NIM) as well as the TUM Graduate School.

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project