Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide

This is a schematic illustration of the process to synthesize silica-coated sulfur particles.
CREDIT: UC Riverside
This is a schematic illustration of the process to synthesize silica-coated sulfur particles.

CREDIT: UC Riverside

Abstract:
Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications in energy-demanding electric vehicles.

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide

Riverside, CA | Posted on March 2nd, 2015

However, there have been fundamental road blocks to commercializing these sulfur batteries. One of the main problems is the tendency for lithium and sulfur reaction products, called lithium polysulfides, to dissolve in the battery's electrolyte and travel to the opposite electrode permanently. This causes the battery's capacity to decrease over its lifetime.

Researchers in the Bourns College of Engineering at the University of California, Riverside have investigated a strategy to prevent this "polysulfide shuttling" phenomenon by creating nano-sized sulfur particles, and coating them in silica (SiO2), otherwise known as glass.

The work is outlined in a paper, "SiO2 - Coated Sulfur Particles as a Cathode Material for Lithium-Sulfur Batteries," just published online in the journal Nanoscale. In addition, the researchers have been invited to submit their work for publication in the Graphene-based Energy Devices special themed issue in RSC Nanoscale.

Ph.D. students in Cengiz Ozkan's and Mihri Ozkan's research groups have been working on designing a cathode material in which silica cages "trap" polysulfides having a very thin shell of silica, and the particles' polysulfide products now face a trapping barrier - a glass cage. The team used an organic precursor to construct the trapping barrier.

"Our biggest challenge was to optimize the process to deposit SiO2 - not too thick, not too thin, about the thickness of a virus", Mihri Ozkan said.

Graduate students Brennan Campbell, Jeffrey Bell, Hamed Hosseini Bay, Zachary Favors, and Robert Ionescu found that silica-caged sulfur particles provided a substantially higher battery performance, but felt further improvement was necessary because of the challenge with the breakage of the SiO2 shell.

"We have decided to incorporate mildly reduced graphene oxide (mrGO), a close relative of graphene, as a conductive additive in cathode material design, to provide mechanical stability to the glass caged structures", Cengiz Ozkan said.

The new generation cathode provided an even more dramatic improvement than the first design, since the team engineered both a polysulfide-trapping barrier and a flexible graphene oxide blanket that harnesses the sulfur and silica together during cycling.

"The design of the core-shell structure essentially builds in the functionality of polysulfide surface-adsorption from the silica shell, even if the shell breaks", Brennan Campbell said. "Incorporation of mrGO serves the system well in holding the polysulfide traps in place. Sulfur is similar to oxygen in its reactivity and energy yet still comes with physical challenges, and our new cathode design allows sulfur to expand and contract, and be harnessed."

###

The work was funded by the Winston Chung Global Energy Center at UC Riverside.

####

For more information, please click here

Contacts:
Sean Nealon

951-827-1287

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project