Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Improved fire detection with new ultra-sensitive, ultraviolet light sensor

Abstract:
A new study published today in Scientific Reports has discovered that a material traditionally used in ceramics, glass and paint can be manipulated to produce an ultra-sensitive UV light sensor, paving the way for improved fire and gas detection.

Improved fire detection with new ultra-sensitive, ultraviolet light sensor

Guildford, UK | Posted on February 17th, 2015

Researchers at the University of Surrey's Advanced Technology Institute manipulated zinc oxide, producing nanowires from this readily available material to create a ultra-violet light detector which is 10,000 times more sensitive to UV light than a traditional zinc oxide detector.

Currently, photoelectric smoke sensors detect larger smoke particles found in dense smoke, but are not as sensitive to small particles of smoke from rapidly burning fires.

Researchers believe that this new material could increase sensitivity and allow the sensor to detect distinct particles emitted at the early stages of fires, paving the way for specialist sensors that can be deployed in a number of applications.

"UV light detectors made from zinc oxide have been used widely for some time but we have taken the material a step further to massively increase its performance. Essentially, we transformed zinc oxide from a flat film to a structure with bristle-like nanowires, increasing surface area and therefore increasing sensitivity and reaction speed," said Professor Ravi Silva, co-author of the study and head of the Advanced Technology Institute.

The team predict that the applications for this material could be far reaching. From fire and gas detection to air pollution monitoring, they believe the sensor could also be incorporated into personal electronic devices, such as phones and tablets, to increase speed, with a response time 1000 times faster than traditional zinc oxide detectors.

"This is a great example of a bespoke, designer nanomaterial that is adaptable to personal needs, yet still affordable. Due to the way in which this material is manufactured, it is ideally suited for use in future flexible electronics, a hugely exciting area," added Professor Silva.

####

About University of Surrey
The Advanced Technology Institute (ATI) at the University of Surrey is an established, multi-disciplinary centre of excellence in Nanotechnology and Photonics. It acts as a "technology hotel" encouraging interaction between researchers in advanced functional materials and the devices that these enable. There is especial interest in the application of technologies to the grand challenges in energy, clean water and healthcare, enabled by nanoscale design of electronics and photonic devices.

The ATI interacts with other centres of excellence at Surrey, who bring expertise, inter alia, in structural materials, telecommunications and space. It engages with industry at all levels from SMEs to multi-nationals, and in helping to establish standards with our principal collaborator, the National Physical Laboratory. The ATI was delighted to recently welcome Dr Chris Mills from Tata's research laboratories who joins us for a two year secondment to build on collaborations developing applications for graphene.

For more information, please click here

Contacts:
Amy Sutton

01-483-616-141

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project