Home > Press > Improved fire detection with new ultra-sensitive, ultraviolet light sensor
![]() |
Abstract:
A new study published today in Scientific Reports has discovered that a material traditionally used in ceramics, glass and paint can be manipulated to produce an ultra-sensitive UV light sensor, paving the way for improved fire and gas detection.
Researchers at the University of Surrey's Advanced Technology Institute manipulated zinc oxide, producing nanowires from this readily available material to create a ultra-violet light detector which is 10,000 times more sensitive to UV light than a traditional zinc oxide detector.
Currently, photoelectric smoke sensors detect larger smoke particles found in dense smoke, but are not as sensitive to small particles of smoke from rapidly burning fires.
Researchers believe that this new material could increase sensitivity and allow the sensor to detect distinct particles emitted at the early stages of fires, paving the way for specialist sensors that can be deployed in a number of applications.
"UV light detectors made from zinc oxide have been used widely for some time but we have taken the material a step further to massively increase its performance. Essentially, we transformed zinc oxide from a flat film to a structure with bristle-like nanowires, increasing surface area and therefore increasing sensitivity and reaction speed," said Professor Ravi Silva, co-author of the study and head of the Advanced Technology Institute.
The team predict that the applications for this material could be far reaching. From fire and gas detection to air pollution monitoring, they believe the sensor could also be incorporated into personal electronic devices, such as phones and tablets, to increase speed, with a response time 1000 times faster than traditional zinc oxide detectors.
"This is a great example of a bespoke, designer nanomaterial that is adaptable to personal needs, yet still affordable. Due to the way in which this material is manufactured, it is ideally suited for use in future flexible electronics, a hugely exciting area," added Professor Silva.
####
About University of Surrey
The Advanced Technology Institute (ATI) at the University of Surrey is an established, multi-disciplinary centre of excellence in Nanotechnology and Photonics. It acts as a "technology hotel" encouraging interaction between researchers in advanced functional materials and the devices that these enable. There is especial interest in the application of technologies to the grand challenges in energy, clean water and healthcare, enabled by nanoscale design of electronics and photonic devices.
The ATI interacts with other centres of excellence at Surrey, who bring expertise, inter alia, in structural materials, telecommunications and space. It engages with industry at all levels from SMEs to multi-nationals, and in helping to establish standards with our principal collaborator, the National Physical Laboratory. The ATI was delighted to recently welcome Dr Chris Mills from Tata's research laboratories who joins us for a two year secondment to build on collaborations developing applications for graphene.
For more information, please click here
Contacts:
Amy Sutton
01-483-616-141
Copyright © University of Surrey
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Flexible Electronics
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |