Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers synthesize material for efficient plasmonic devices in mid-infrared range

Abstract:
"Dysprosium doped cadmium oxide: A gateway material for mid-infrared plasmonics"

Authors: Edward Sachet, Christopher T. Shelton, Joshua S. Harris, Benjamin E. Gaddy, Douglas L. Irving, Stefan Franzen, and Jon-Paul Maria, North Carolina State University; Stefano Curtarolo, Duke University; Brian F. Donovan and Patrick E. Hopkins, University of Virginia; and Peter A. Sharma, Ana Lima Sharma, and Jon Ihlefeld, Sandia National Laboratories

Published: Feb. 16, Nature Materials

DOI:10.1038/nmat4203

Abstract: The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors, and information storage. While plasmonic materials for UV-VIS and near infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab-initio modeling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate "defect equilibrium engineering." In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomes the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy-doping is sufficiently small, allowing mobility values around 500 cm2/V·s for carrier densities above 1020/cm3. Our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical, and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.

Researchers synthesize material for efficient plasmonic devices in mid-infrared range

Raleigh, NC | Posted on February 16th, 2015

A research team led by North Carolina State University has identified and synthesized a material that can be used to create efficient plasmonic devices that respond to light in the mid-infrared (IR) range. This is the first time anyone has demonstrated a material that performs efficiently in response to this light range, and it has applications in fields ranging from high-speed computers, to solar energy to biomedical devices.

At issue is a phenomenon called surface plasmon resonance. This is when researchers illuminate the interface between a conducting and an insulating material. If the angle, polarization, and wavelength of the incoming light are just right, electrons in the conductor begin oscillating. This oscillation creates an intense electric field extending into the insulator that can be used in everything from biomedical sensors to solar cells or opto-electronic devices.

The wavelength of light that causes these oscillations depends on the nature of the conductive material. Materials with a high density of free electrons (like metals) respond to short wavelengths of light, such as those in the ultraviolet range. Materials with lower electron density (like conventional semiconductors) respond to long wavelengths of light, such as those in the far IR. But until now, there was a huge gap - scientists were unable to identify materials that could support efficient surface plasmon resonance when targeted with wavelengths of light in the mid-IR range (i.e., between 1,500 and 4,000 wavenumbers).

"There are at least three practical reasons for wanting to identify materials that exhibit surface plasmon resonance in response to mid-IR light," says Dr. Jon-Paul Maria, corresponding author of a paper on the work and a professor of materials science and engineering at NC State.

"First, it could make solar harvesting technology more efficient by taking advantage of the mid-IR wavelengths of light - that light wouldn't be wasted. Second, it would allow us to develop more sophisticated molecular sensing technology for use in biomedical applications. And third, it would allow us to develop faster, more efficient opto-electronic devices," Maria says.

"We've now synthesized such a material, and shown that it effectively exhibits low-loss surface plasmon resonance in the mid-IR range," Maria says. In other words, it efficiently converts mid-IR light into oscillating electrons.

Specifically, the research team has "doped" cadmium oxide with a rare earth element called dysprosium, meaning that a tiny amount of dysprosium has been added to cadmium oxide without changing the material's crystal structure.

This does two things. First, it creates free electrons in the material. Second, it increases the mobility of the electrons. Overall, this makes it easier for mid-IR light to induce oscillations in the electrons efficiently.

"Usually when you dope a material, electron mobility goes down," Maria says. "But in this case we found the opposite - more dysprosium doping increases this critical characteristic. In technical terms, our experiments revealed that Dy-doping reduces the number of oxygen vacancies in a CdO crystal. Oxygen vacancies, which correspond to locations where oxygen atoms are missing, are strong electron scatterers and interfere with electron motion. In the most basic terms, by removing these defects, electrons scatter less and become more mobile."

The research was supported by the National Science Foundation under grants CHE-1112017 and DMR-1151568, the Air Force Office of Scientific Research under grant FA9550-14-1-0067, and the Office of Naval Research under grant N00014-13-4-0528.

####

For more information, please click here

Contacts:
Dr. Jon-Paul Maria
919.513.2843


Matt Shipman
919.515.6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, "Dysprosium doped cadmium oxide: A gateway material for mid-infrared plasmonics," was published online Feb. 16 in Nature Materials. The lead author of the paper is Edward Sachet, a Ph.D. student at NC State. Co-authors include Christopher Shelton, Joshua Harris, Benjamin Gaddy, and Drs. Doug Irving and Stefan Franzen of North Carolina State University; Dr. Stefano Curtarolo of Duke University; Brian Donovan and Dr. Patrick Hopkins of the University of Virginia; and Drs. Peter Sharma, Ana Lima Sharma, and Jon Ihlefeld of Sandia National Laboratories:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project