Home > Press > Breakthrough may lead to industrial production of graphene devices
![]() |
Abstract:
With properties that promise faster computers, better sensors and much more, graphene has been dubbed the 'miracle material'. But progress in producing it on an industrial scale without compromising its properties has proved elusive. University of Groningen scientists may now have made a breakthrough. Their results will be published in the journal Nano Letters.
Graphene is a special material with crystals that are just one atom thick. Electrons pass through it with hardly any resistance at all, and despite being very flexible, it is stronger than any metal. The discoverers of graphene, Andre Geim and Konstantin Novoselov, famously made it by peeling graphite with Scotch tape until they managed to isolate a single atomic layer: graphene. It won them the 2010 Nobel Prize in Physics.
'The challenge is to find a substrate that not only preserves the properties of graphene, but also enables scalable production.', says Stefano Gottardi, PhD student at the University of Groningen Zernike Institute for Advanced Materials. A good candidate is chemical vapour deposition. Here heat is used to vaporize a carbon precursor like methane, which then reacts with a catalytically active substrate to form graphene on its surface. A transition metal is normally used as the substrate. However, not only does the transition metal act as a support, but it also tends to interact with the graphene and modify - or even deteriorate - its outstanding properties.
Cumbersome
To restore these properties after growth on the metal, the graphene has to be transferred to a non-interacting substrate, but this transfer process is cumbersome and often introduces defects. Nevertheless, many scientists are trying to improve graphene growth on transition metals, mostly using copper foil as the substrate.
This is what the Surfaces and Thin Films group of Gottardi's supervisors Meike Stöhr and Petra Rudolf did too. 'When we analyzed a sample of graphene on copper, we made some strange observations', Stöhr recalls. The observations suggested that alongside the copper some copper oxide was also present. Indeed, a nice graphene film appeared to have formed on the copper oxide, and as oxidized metals might leave the properties of graphene unaltered, this was a potentially important observation.
Achievement
The Groningen team began to study this possibility in more detail. That was three years ago. Since then, Gottardi and his colleagues have managed to successfully grow graphene on copper oxide. This achievement together with an in-depth characterization of graphene's properties will be published in Nano Letters. The team also reports the remarkable finding that graphene on copper oxide is decoupled from the substrate, which means that it preserves its peculiar electronic properties.
The results could be far-reaching. Stöhr: 'Other labs need to reproduce our findings, and quite a bit of work needs to be done to optimize growth conditions.' The best case scenario would be that large single-domain crystals of graphene could be grown on copper oxide. If this proves to be the case, it should then be possible to use lithographic techniques to make all sorts of electronic devices from graphene in a commercially viable manner. An unexpected observation three years ago may thus prove to be the start of a new era of graphene electronics.
###
Reference: Stefano Gottardi *1, Kathrin Müller 1, Luca Bignardi 1, Juan Carlos Moreno-López 1, Tuan Anh Pham 1, Oleksii Ivashenko 1, Mikhail Yablonskikh 2, Alexei Barinov 2, Jonas Björk 3, Petra Rudolf 1, and Meike Stöhr *1 Comparing Graphene Growth on Cu(111) versus Oxidized Cu(111) Nano Letters, in press, DOI: 10.1021/nl5036463
1 Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
2 Sincrotrone Trieste s.c.p.a., 34149 Basovizza, Trieste, Italy
3 Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183 Linköping, Sweden
####
For more information, please click here
Contacts:
Rene Fransen
31-503-639-651
Copyright © University of Groningen
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |