Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breakthrough may lead to industrial production of graphene devices

Abstract:
With properties that promise faster computers, better sensors and much more, graphene has been dubbed the 'miracle material'. But progress in producing it on an industrial scale without compromising its properties has proved elusive. University of Groningen scientists may now have made a breakthrough. Their results will be published in the journal Nano Letters.

Breakthrough may lead to industrial production of graphene devices

Groningen, The Netherlands | Posted on February 10th, 2015

Graphene is a special material with crystals that are just one atom thick. Electrons pass through it with hardly any resistance at all, and despite being very flexible, it is stronger than any metal. The discoverers of graphene, Andre Geim and Konstantin Novoselov, famously made it by peeling graphite with Scotch tape until they managed to isolate a single atomic layer: graphene. It won them the 2010 Nobel Prize in Physics.

'The challenge is to find a substrate that not only preserves the properties of graphene, but also enables scalable production.', says Stefano Gottardi, PhD student at the University of Groningen Zernike Institute for Advanced Materials. A good candidate is chemical vapour deposition. Here heat is used to vaporize a carbon precursor like methane, which then reacts with a catalytically active substrate to form graphene on its surface. A transition metal is normally used as the substrate. However, not only does the transition metal act as a support, but it also tends to interact with the graphene and modify - or even deteriorate - its outstanding properties.

Cumbersome

To restore these properties after growth on the metal, the graphene has to be transferred to a non-interacting substrate, but this transfer process is cumbersome and often introduces defects. Nevertheless, many scientists are trying to improve graphene growth on transition metals, mostly using copper foil as the substrate.

This is what the Surfaces and Thin Films group of Gottardi's supervisors Meike Stöhr and Petra Rudolf did too. 'When we analyzed a sample of graphene on copper, we made some strange observations', Stöhr recalls. The observations suggested that alongside the copper some copper oxide was also present. Indeed, a nice graphene film appeared to have formed on the copper oxide, and as oxidized metals might leave the properties of graphene unaltered, this was a potentially important observation.

Achievement

The Groningen team began to study this possibility in more detail. That was three years ago. Since then, Gottardi and his colleagues have managed to successfully grow graphene on copper oxide. This achievement together with an in-depth characterization of graphene's properties will be published in Nano Letters. The team also reports the remarkable finding that graphene on copper oxide is decoupled from the substrate, which means that it preserves its peculiar electronic properties.

The results could be far-reaching. Stöhr: 'Other labs need to reproduce our findings, and quite a bit of work needs to be done to optimize growth conditions.' The best case scenario would be that large single-domain crystals of graphene could be grown on copper oxide. If this proves to be the case, it should then be possible to use lithographic techniques to make all sorts of electronic devices from graphene in a commercially viable manner. An unexpected observation three years ago may thus prove to be the start of a new era of graphene electronics.

###

Reference: Stefano Gottardi *1, Kathrin Müller 1, Luca Bignardi 1, Juan Carlos Moreno-López 1, Tuan Anh Pham 1, Oleksii Ivashenko 1, Mikhail Yablonskikh 2, Alexei Barinov 2, Jonas Björk 3, Petra Rudolf 1, and Meike Stöhr *1 Comparing Graphene Growth on Cu(111) versus Oxidized Cu(111) Nano Letters, in press, DOI: 10.1021/nl5036463

1 Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

2 Sincrotrone Trieste s.c.p.a., 34149 Basovizza, Trieste, Italy

3 Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183 Linköping, Sweden

####

For more information, please click here

Contacts:
Rene Fransen

31-503-639-651

Copyright © University of Groningen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project