Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Discovery of Josephson Junctions Generated in Atomic-Layered Superconductors

A 3-D diagram of an atomic-layered superconductor observed under the scanning tunneling microscope. The heights of atomic layers are depicted, and the densities of localized electron states are represented by different brightnesses. Superconducting quantum vortices exist in the bright areas near atomic steps. The differences among A, B and C are attributed to the change in strength of the respective Josephson junctions, and to the differences in the gap width between the indium atomic layers near atomic steps. In particular, C is identified as a Josephson vortex. Arrows schematically indicate the flow of supercurrent and the pattern where, as a Josephson junction weakens, the vortex elongates in the direction parallel to the atomic step.
A 3-D diagram of an atomic-layered superconductor observed under the scanning tunneling microscope. The heights of atomic layers are depicted, and the densities of localized electron states are represented by different brightnesses. Superconducting quantum vortices exist in the bright areas near atomic steps. The differences among A, B and C are attributed to the change in strength of the respective Josephson junctions, and to the differences in the gap width between the indium atomic layers near atomic steps. In particular, C is identified as a Josephson vortex. Arrows schematically indicate the flow of supercurrent and the pattern where, as a Josephson junction weakens, the vortex elongates in the direction parallel to the atomic step.

Abstract:
1. A research group at the NIMS (Sukekatsu Ushioda, president) International Center for Materials Nanoarchitectonics (MANA, Masakazu Aono, director), consisting of post-doctoral researcher Shunsuke Yoshizawa, MANA researcher Takashi Uchihashi, MANA principal investigator Tomonobu Nakayama, post-doctoral researcher Takuto Kawakami and MANA principal investigator Xiao Hu, and a research team at the Institute for Solid State Physics of the University of Tokyo, consisting of post-doctoral researcher Kim Howon and associate professor Yukio Hasegawa, discovered that in an atomic-scale thick superconductor formed on a silicon surface, a single-atom difference in height between atomic layers (atomic step) acts as a Josephson junction that controls the flow of supercurrent.

Discovery of Josephson Junctions Generated in Atomic-Layered Superconductors

Tsukuba, Japan | Posted on February 4th, 2015

2. Recently discovered atomic-layered superconductors on a silicon surface have the potential of developing into ultra-tiny, superconducting nano-devices with atomic-scale thickness. However, fabrication of such devices requires the creation of a Josephson junction, an essential component in superconducting logic elements, and the method of creating such junctions had not been well understood.

3. Conducting an experiment using a scanning tunneling microscope, and performing microscopic theoretical calculations, the research team recently discovered that a special superconducting state called a Josephson vortex, a type of superconducting quantum vortex, is generated at atomic steps in atomic-layered superconductors. Based on this finding, the team revealed that atomic steps act as Josephson junctions. These results also indicate that the use of atomic-layered superconductors enables quick and mass fabrication of Josephson junctions in a self-organizing manner in contrast to the current method of fabricating the junctions one by one using conventional superconducting elements.

4. In consideration of these findings, in the future studies, the researchers are planning to fabricate Josephson elements that are only an atomic-level thick and apply them to superconducting devices. Also, it is known that Josephson vortices play a vital role in high-temperature superconductors that are a promising technology for electric power applications. The results from this study are expected to contribute to the identification of superconducting properties of high-temperature superconductors.

5. This study was jointly conducted with Yuki Nagai, a researcher at the Japan Atomic Energy Agency, as a part of the world premier international research center initiative and the grants-in-aid for scientific research program sponsored by the Ministry of Education, Culture, Sports, Science and Technology.

This study has been published in Physical Review Letters, an journal of the American Physical Society, as an Editors' Suggestion article.

####

About National Institute for Materials Science (NIMS)
Public research institution for materials science in Japan.

For more information, please click here

Contacts:
Dr. Takashi Uchihashi
MANA scientist
Nano Functionality Integration Group, NIMS
TEL: +81-29-860-4150
FAX: +81-29-860-4793
E-Mail:

・About theoretical calculations

Xiao Hu
Nano-System Theoretical Physics Group,
International Center for Materials Nanoarchitectonics (MANA), NIMS
TEL: +81-29-860-4897


・About experimental devices
Dr. Yukio Hasegawa
Associate Professor
Division of Nanoscale Science
The Institute for Solid State Physics, The University of Tokyo
TEL: +81-4-7136-3325
FAX: +81-4-7136-3326


・About press releases and public relations
Public Relations Office, Planning Department,
National Institute for Materials Science
1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
TEL: +81-29-859-2026
FAX: +81-29-859-2017

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Superconductivity

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project