Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoshuttle wear and tear: It's the mileage, not the age

Molecular shuttles are a nanoscale transport system in which microtubules (acting as cargo carriers) are propelled by surface-adhered kinesin motor proteins. Researchers have found that as the microtubules are propelled by the kinesin motors, tubulin subunits are removed from the leading end.
CREDIT: Coneyl Jayasinhe for Columbia Engineering
Molecular shuttles are a nanoscale transport system in which microtubules (acting as cargo carriers) are propelled by surface-adhered kinesin motor proteins. Researchers have found that as the microtubules are propelled by the kinesin motors, tubulin subunits are removed from the leading end.

CREDIT: Coneyl Jayasinhe for Columbia Engineering

Abstract:
As nanomachine design rapidly advances, researchers are moving from wondering if the nanomachine works to how long it will work. This is an especially important question as there are so many potential applications, for instance, for medical uses, including drug delivery, early diagnosis, disease monitoring, instrumentation, and surgery. In a new study led by Henry Hess, associate professor of biomedical engineering at Columbia Engineering, researchers observed a molecular shuttle powered by kinesin motor proteins and found it to degrade when operating, marking the first time, they say, that degradation has been studied in detail in an active, autonomous nanomachine.

Nanoshuttle wear and tear: It's the mileage, not the age

New York, NY | Posted on January 26th, 2015

"Our nanoshuttle degraded just like a car that falls apart after a few hundred thousand miles of driving--except that, for our molecular shuttle, the equivalent to a hundred thousand miles turns out to be a millimeter," says Hess, who collaborated on the study with his former student Emmanuel Dumont PhD'14, now an Innovation Fellow at Cornell Technion, and Catherine Do, postdoctoral research scientist in the Institute for Cancer Genetics at Columbia University Medical Center. The paper--"Molecular wear of microtubules propelled by surface-adhered kinesins"--is published January 26 in Nature Nanotechnology's Advance Online Publication.

Researchers are already working towards creating artificial muscles and other active materials, and, in order to make useful, practical systems, it is critical that they understand how to make the systems last. "What this means," Hess explains, "is that as we try to understand the design of biological nanomachines operating inside cells and then as we try to invent new synthetic nanomachines, we have to be mindful of their lifetime and make them either last or make them able to renew themselves."

Biomolecular systems can undergo a range of active movements at the nanoscale that are enabled by the transduction of chemical energy into mechanical work by polymerization processes and motor proteins. Hess and his team used an in vitro system to study nanoscale movement and its consequences and discovered that the mechanical activity of biomolecular motors causes wear at the molecular scale similar to the wearing out of a running car engine. In humans, biomolecular motors are also responsible for the contraction of muscles and the delivery of packages inside cells, and, to prevent aging and disease, these process have to run smoothly for a lifetime. Biological mechanisms such as the continuous replacement of molecular parts have evolved to prevent the rapid degradation of the body's nanomachines.

"Our study has shown that wear is an important issue which has to be considered in the design of nanomachines," Hess adds. "And it's clear that a better understanding of nanoengineering will help us to better understand aging and degeneration in biological systems."

This study is supported by the National Science Foundation and facilitated by the Center for Integrated Nanotechnologies at Sandia National Labs, a DOE-supported user facility.

The authors declare no competing financial interests.

####

For more information, please click here

Contacts:
Holly Evarts

347-453-7408

Copyright © Columbia University School of Engineering and Applied Scienc

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project