Home > Press > Electronic circuits with reconfigurable pathways closer to reality
Abstract:
Will it be possible one day to reconfigure electronic microchips however we want, even when they are in use? A recent discovery by a team at EPFL suggests as much. The researchers have demonstrated that it is possible to create conductive pathways several atoms wide in a material, to move them around at will and even to make them disappear. Their research is the subject of a recent article appearing in Nature Nanotechnology.
Adaptable electronics is generating significant interest in the scientific community because of the many applications. Imagine for a moment that one single microchip was capable of accomplishing the tasks of several different circuits. For example, a circuit assigned to process sound information could, when not being used for this purpose, be reassigned to process images. This would allow us to miniaturise our electronic devices.
At the same time, it would become possible to develop resilient circuits. Whenever a microchip is damaged, it could theoretically reconfigure itself so that it could still function using the components that remain intact. "An effective way to keep faulty devices working when they are in hard-to-reach places, like space," says Leo McGilly, the article's lead author.
Underlying this promising technology are so-called 'ferroelectric' materials in which it is possible to create flexible conductive pathways. These pathways are generated by applying an electric field to the material. More specifically, when the electric current is applied, certain atoms moves either "up" or "down," which is known as polarisation. In recent years, the academic world has observed that conductive pathways several atoms wide - called 'walls' - form between these polarized zones. The only problem is that, until now, it was impossible to control how these pathways form.
At EPFL, the researchers demonstrated that it was possible to control the formation of walls on a film of ferroelectric material, and thus to create pathways where they wanted at given sites. The trick lies in producing a sandwich-like structure with platinum components on the outside and a ferroelectric material on the inside. "By applying electric fields locally on the metal part, we were able to create pathways at different sites and move them, and also to destroy them with a reverse electric field," says Mc Gilly. Low conductive electrodes were used to surround the ferroelectric material. This means that the charge spreads very slowly in the structure, making it possible to control exactly where it is applied. "When we use highly conductive materials, the charge spreads rapidly and walls form randomly in the material."
At this point, the researchers have tested their research on isolated materials. The next step consists in developing a prototype of a reconfigurable circuit. Leo McGilly would go even further. "The fact that we can generate pathways wherever we want could allow us to imitate in the future phenomena that take place inside the brain, with the regular creation of new synapses. This could prove useful in reproducing the phenomenon of learning in an artificial brain."
###
Title of publication: Controlling domain wall motion in ferroelectric thin films
####
For more information, please click here
Contacts:
Leo Mc Gilly
41-216-931-043
Copyright © Ecole Polytechnique Fédérale de Lausanne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Hardware
The present and future of computing get a boost from new research July 21st, 2023
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Artificial Intelligence
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||