Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New method to generate arbitrary optical pulses

This is an example of custom-shaped pulses at 100-GHz repetition rate.
CREDIT: University of Southampton
This is an example of custom-shaped pulses at 100-GHz repetition rate.

CREDIT: University of Southampton

Abstract:
Scientists from the University of Southampton have developed a new technique to generate more powerful, more energy efficient and low-cost pulsed lasers.

New method to generate arbitrary optical pulses

Southampton, UK | Posted on January 21st, 2015

The technique, which was developed by researchers from the University's Optoelectronics Research Centre (ORC), has potential applications in a number of fields that use pulsed lasers including telecommunications, metrology, sensing and material processing.

Any application that requires optical pulses typically needs waveforms of a specific repetition rate, pulse duration, and pulse shape. It is often challenging to design and manufacture a laser with these parameters exactly as required. Even when a suitable solution exists, the size, the complexity and ease of operation of the laser are further critical considerations.

The new method works on a fundamentally different principle to existing pulsed lasers. It relies upon the coherent combination of multiple semiconductor lasers, each operating continuous-wave at different precisely defined frequencies (wavelengths). Through the precise control of the amplitude and phase of each laser's output, it is possible to produce complex pulsed optical waveforms with a huge degree of user flexibility. The key to making the approach work is to phase-lock the semiconductor lasers to an optical frequency comb, which ensures the individual lasers have well-defined mutual coherence.

David Wu, lead author of the study and winner of the 2014 Engineering and Physical Sciences Research Council (EPSRC) ICT Pioneers award for this work, said: "As our new technique is based on a different approach to that currently used, it has several distinct features that are relevant in many applications. First, it is easily scalable - by combining a larger number of input lasers, shorter or more complicated-shape pulses and/or more power can be obtained. It can also generate pulses with a very low-level of noise (down to the quantum limit) and very high (greater than one THz) repetition frequencies.

"Finally, it consists of miniature and low-cost semiconductor lasers that can be all integrated on the same chip, making our pulse generator potentially very compact, robust, energetically efficient, and low-cost."

Dr Radan Slavik, who leads the research group, added: "We believe that this work is likely to be of direct interest to scientists working in virtually any field of optics where pulsed laser sources are used. We also believe that the concept and phase-locking technology developed could be widely applicable with the broader optics/photonics community."

###

The research is reported in a recent issue of the journal Optica - a new The Optical Society (OSA) journal, which focuses on rapid dissemination of high-impact results in all areas of optics and photonics (It is the first Southampton study to feature in Optica). The research is funded by the EPSRC through the Early Career Research Fellowship of Dr Slavik (EP/K003038/1) and through the "Photonic Hyperhighway" Programme Grant (EP/101196X).

####

For more information, please click here

Contacts:
Glenn Harris

44-023-805-93212

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Wireless/telecommunications/RF/Antennas/Microwaves

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project