Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Phenomenon that fights with superconductivity universal across both flavors of cuprates

Abstract:
Researchers have spotted charge ordering - a phenomenon that interferes with superconductivity - in electron-doped copper-oxide crystals for the first time. The discovery is a critical step towards achieving zero electrical resistance at room temperature.

Phenomenon that fights with superconductivity universal across both flavors of cuprates

Toronto, Canada | Posted on January 16th, 2015

The findings appear in a paper scheduled for publication in Science Jan. 16, spearheaded by CIFAR Global Scholar Eduardo H. da Silva Neto and Riccardo Comin (University of British Columbia), and co-authored by Advisor Richard Green (University of Maryland), as well as senior fellows George Sawatzky and Andrea Damascelli (University of British Columbia) - who is also leader of the research team. The project originated from discussions within CIFAR's Quantum Materials program.

Superconductivity happens when electrons pull closely together forming pairs and travel through the crystal lattice of a material without resistance. In copper-oxide compounds, or cuprates, high-temperature superconductivity is achieved in crystals that have electrons either added or removed from their atoms.

When electrons are removed, the process is called hole-doping. Physicists have known for a few years that in hole-doped copper-oxides an event called charge ordering competes with superconductivity once temperatures begin to warm up from near absolute zero.

In a typical crystal, atoms form highly-organized periodic lattices and so do their electrons. But in some materials, an instability causes some electrons to reorganize, forming new periodic patterns of charge, which do not follow the underlying atoms. This is called charge ordering. In hole-doped cuprates this charge ordering disturbs the delicate pattern required for superconductivity, leading the material to fluctuate between the two states until the temperature cools enough for superconductivity to win.

"You essentially have a fight between charge ordering and superconductivity," da Silva Neto says.

The new study reveals that charge ordering also happens in electron-doped cuprates and is therefore universal across both flavours of cuprates, despite most scientific evidence to date suggesting otherwise.

What's more, past research has led scientists to believe that charge ordering only happens during a transition stage to superconductivity called the pseudogap.

"In the hole-doped cuprates, where all the experiments have been done, it all goes back to this mysterious pseudogap phase," da Silva Neto says.

Studies had so far suggested that charge ordering requires the pseudogap state in order to occur - leading to many attempts to explain the former in terms of the later. However, this study detected charge ordering at a higher temperature than the pseudogap phase, contradicting what has become a paradigm in the field. The result suggests a new direction for understanding the problem.

"The discovery of charge ordering has been huge. It has really caused a boom in the field, giving it some new life in the last few years," da Silva Neto says. "It gives us hope that if we can tune it or manipulate it out of the system, the critical temperature for superconductivity could go higher."

The new study reveals that charge ordering behaves in ways scientists did not expect, opening new possibilities for future explorations.

####

About CIFAR
CIFAR creates knowledge that will transform our world. The Institute brings together outstanding researchers to work in global networks that address some of the most important questions our world faces today. Our networks help support the growth of research leaders and are catalysts for change in business, government and society.

Established in 1982, CIFAR is a Canadian-based, global organization, comprised of nearly 350 fellows, scholars and advisors from more than 100 institutions in 16 countries. CIFAR partners with the Government of Canada, provincial governments, individuals, foundations, corporations and research institutions to extend our impact in the world.

For more information, please click here

Contacts:
Lindsay Jolivet

416-971-4876

Eduardo H. da Silva Neto
CIFAR Global Scholar, University of British Columbia

Office: 604-827-3040

Copyright © CIFAR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project