Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells

The electro-oxidation measurements clearly showed that the adsorbed CO was removed by Cr(VI). Based on the standard reduction potential values for COad electro-oxidation coupled with OHad ,CO(g) oxidation to CO2 and Cr(VI) reduction and [E0 (CO2/COad +OHad) = 0.7~0.8 VNHE (from electrochemical measurements)] , [E 0(CO2/CO) = -0.1 VNHE] and [E0 (Cr2O72?/Cr3+) = 1.35 VNHE], the oxidation of CO to CO2 coupled with the reductive conversion of Cr (VI) to Cr (III) is thermodynamically spontaneous. This redox process achieved not only the cleaning of the Pt electrode surface but also the transformation of toxic Cr (VI) into non-toxic Cr (III).
CREDIT IBS Center for Nanoparticle Research
The electro-oxidation measurements clearly showed that the adsorbed CO was removed by Cr(VI). Based on the standard reduction potential values for COad electro-oxidation coupled with OHad ,CO(g) oxidation to CO2 and Cr(VI) reduction and [E0 (CO2/COad +OHad) = 0.7~0.8 VNHE (from electrochemical measurements)] , [E 0(CO2/CO) = -0.1 VNHE] and [E0 (Cr2O72?/Cr3+) = 1.35 VNHE], the oxidation of CO to CO2 coupled with the reductive conversion of Cr (VI) to Cr (III) is thermodynamically spontaneous. This redox process achieved not only the cleaning of the Pt electrode surface but also the transformation of toxic Cr (VI) into non-toxic Cr (III).

CREDIT IBS Center for Nanoparticle Research

Abstract:
The Center for Nanoparticle Research at the Institute for Basic Science (IBS) has succeeded in proposing a new method to enhance fuel cell efficiency with the simultaneous removal of toxic heavy metal ions.

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells

Daejeon, Korea | Posted on January 5th, 2015

The direct methanol fuel cell (DFMC) has been a promising energy conversion device for electrical vehicles and portable devices. However, the inevitable Carbon monoxide (CO) poisoning is one of the main factors reducing its performance. Furthermore, the hexavalent chromium (Cr (VI)) also present, is a harmfully toxic, carcinogenic heavy metal in the aquatic environment.

The research team applied the Cr (VI) as a type of "CO scavenger" to the DMFC. Their new method not only uses the redox process to clean the platinum electrode surface by transforming CO into CO2 , but also allows for the Cr (VI) to convert into Cr (III), which is a much less toxic oxidation state and even a micronutrient. As a result, the potential maintained a nearly constant value of up to 10 hours and the presence of Cr (VI) was completely absent. Moreover, it enhances the maximum power density by 20% at 70?.

"Fuel cells have presented obstacles such as low performance and CO poisoning which have prevented them from becoming possible, next generation energy sources until now," explains Professor Yung-Eun Sung, both a group leader of the Center for Nanoparticle Research at IBS and the professor of the School of Chemical and Biological Engineering at the Seoul National University. "This new hybrid fuel cell technology is expected to propel the deployment of direct methanol fuel cells."

####

For more information, please click here

Contacts:
Hanbin Oh

82-428-788-182

Copyright © IBS Center for Nanoparticle Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Fuel Cells

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project