Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Studies on exotic superfluids in spin-orbit coupled Fermi gases were reviewed

Schematic illustration of the single-particle spectra modified by spin-orbit coupling. The Rashba-type spin-orbit coupling can lead to a degenerate ring in momentum space for the lower branch of the single-particle dispersion spectra (left). The lower-branch dispersion spectrum under the NIST-type spin-orbit coupling (right) is less symmetric. These differences, as well as the hyperfine-spin dependence of the single-particle dispersion under spin-orbit coupling, give rise to rich physics in these systems.©Science China Press
Schematic illustration of the single-particle spectra modified by spin-orbit coupling. The Rashba-type spin-orbit coupling can lead to a degenerate ring in momentum space for the lower branch of the single-particle dispersion spectra (left). The lower-branch dispersion spectrum under the NIST-type spin-orbit coupling (right) is less symmetric. These differences, as well as the hyperfine-spin dependence of the single-particle dispersion under spin-orbit coupling, give rise to rich physics in these systems.

©Science China Press

Abstract:
Ultracold atomic gases have been widely considered as ideal platforms for quantum simulation. Thanks to the clean environment and the highly tunable parameters in these systems, many interesting physical models can be simulated using cold atomic gases, and various novel many-body states have been prepared and probed experimentally. The recent experimental realization of synthetic gauge field in ultracold atomic gases has significantly extended the horizon of quantum simulation with cold atoms. As a special form of synthetic gauge field, synthetic spin-orbit coupling has attracted much attention recently. Professor YI Wei from University of Science and Technology of China, Professor ZHANG Wei from Renmin University of China, and Professor CUI Xiaoling from Chinese Academy of Sciences reviewed the recent theoretical studies on various novel pairing superfluid phases in spin-orbit coupled ultracold Fermi gases. They showed that spin-orbit coupling modifies the single-particle spectra, which gives rise to exotic few-body correlations and interesting pairing states. The review article, entitled "Pairing superfluidity in spin-orbit coupled ultracold Fermi gases", was published in SCIENCE CHINA Physics, Mechanics & Astronomy 2015, Vol. 58(1).

Studies on exotic superfluids in spin-orbit coupled Fermi gases were reviewed

Beijing, China | Posted on December 30th, 2014

In condensed-matter materials, spin-orbit coupling plays a key role in many interesting phenomena, such as quantum spin Hall effects, topological insulators, and topological superconductors. With the availability of synthetic spin-orbit coupling as a tool of quantum control, people hope to simulate various topological phases, the topological superfluid state in particular, in the highly controllable environment of ultracold Fermi gases. Indeed, recent theoretical studies have suggested that exotic superfluid phases and novel phenomena can be engineered with carefully designed configurations. By reviewing these theoretical studies, YI et al. discuss the exotic superfluid phases in systems with different spatial dimensions and with different forms of spin-orbit coupling. A fundamentally important effect of spin-orbit coupling is the modification of single-particle dispersion spectra. The review focuses on how this effect leads to interesting pairing phases such as the topological superfluid state, various gapless superfluid states, the spin-orbit-coupling-induced Fulde-Ferrell state, and the topological Fulde-Ferrell state. Besides many-body physics, the change in the single-particle dispersion can also induce novel few-body correlations, for example, a three-body bound state in the absence of any stable two-body bound state. These interesting few-body states, if observed, should no doubt give rise to even more exotic many-body properties.

###

By reviewing these topics, the article summarizes the latest developments in the theoretical study of pairing physics in spin-orbit coupled Fermi gases, and is helpful for future theoretical and experimental characterization of the rich physics in these systems. The research project was partially supported by grants from the National Key Basic Research Program, the National Fundamental Research Program, the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University, and the programs of Chinese Academy of Sciences.

####

For more information, please click here

Contacts:
YI Wei

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project