Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots

Andrew H. Marcus, left, and Mark C. Lonergan, both of the University of Oregon, stand by UO spectroscopy equipment that was adapted to study photon interactions in photocells that used lead-sulfide quantum dots as photoactive semiconductor material.

Credit: University of Oregon
Andrew H. Marcus, left, and Mark C. Lonergan, both of the University of Oregon, stand by UO spectroscopy equipment that was adapted to study photon interactions in photocells that used lead-sulfide quantum dots as photoactive semiconductor material.

Credit: University of Oregon

Abstract:
Four pulses of laser light on nanoparticle photocells in a University of Oregon spectroscopy experiment has opened a window on how captured sunlight can be converted into electricity.

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots

Eugene, OR | Posted on December 19th, 2014

The work, which potentially could inspire devices with improved efficiency in solar energy conversion, was performed on photocells that used lead-sulfide quantum dots as photoactive semiconductor material. The research is detailed in a paper placed online by the journal Nature Communications.

In the process studied, each single photon, or particle of sunlight, that is absorbed potentially creates multiple packets of energy called excitons. These packets can subsequently generate multiple free electrons that generate electricity in a process known as multiple exciton generation (MEG). In most solar cells, each absorbed photon creates just one potential free electron.

Multiple exciton generation is of interests because it can lead to solar cells that generate more electrical current and make them more efficient. The UO work shines new light on the little understood process of MEG in nanomaterials.

While the potential importance of MEG in solar energy conversion is under debate by scientists, the UO spectroscopy experiment -- adapted in a collaboration with scientists at Sweden's Lund University -- should be useful for studying many other processes in photovoltaic nanomaterials, said Andrew H. Marcus, professor of physical chemistry and head of the UO Department of Chemistry and Biochemistry.

Spectroscopic experiments previously designed by Marcus to perform two-dimensional fluorescence spectroscopy of biological molecules were adapted to also measure photocurrent. "Spectroscopy is all about light and molecules and what they do together," Marcus said. "It is a really great probe that helps to tell us about the reaction pathway that connects the beginning of a chemical or physical process to its end.

"The approach is similar to looking at how molecules come together in DNA, but instead we looked at interactions within semiconductor materials," said Marcus, an affiliate in UO's Institute of Molecular Biology, Materials Science Institute and Oregon Center for Optics. "Our method made it possible to look at electronic pathways involved in creating multiple excitons. The existence of this phenomenon had only been inferred through indirect evidence. We believe we have seen the initial steps that lead to MEG-mediated photo conductivity."

The controlled sequencing of laser pulses allowed the seven-member research team to see -- in femtoseconds (a femtosecond is one millionth of one billionth of a second) -- the arrival of light, its interaction with resting electrons and the subsequent conversion into multiple excitons. The combined use of photocurrent and fluorescence two-dimensional spectroscopy, Marcus said, provided complementary information about the reaction pathway.

UO co-author Mark C. Lonergan, professor of physical and materials chemistry, who studies electrical and electrochemical phenomena in solid-state systems, likened the processes being observed to people moving through a corn maze that has one entrance and three exits.

People entering the maze are photons. Those who exit quickly represent absorbed photons that generate unusable heat. People leaving the second exit represent other absorbed photons that generate fluorescence but not usable free electrons. People leaving the final exit signify usable electrical current.

"The question we are interested in is exactly what does the maze look like," Lonergan said. "The problem is we don't have good techniques to look inside the maze to discover the possible pathways through it. The techniques that Andy has developed basically allow us to see into the maze by encoding what is coming out of the system in terms of exactly what is going in. We can visualize what is going on, whether two people coming into the maze shook hands at some point and details about the pathway that led them to come out the electricity exit."

The project began when Tonu Pullerits, who studies ultrafast photochemistry in semiconductor molecular materials at Lund University, approached Marcus about adopting his spectroscopic system to look at solar materials. Khadga J. Karki, a postdoctoral researcher in Pullerits' lab, then visited the UO and teamed with the Marcus and Lonergan groups to reconfigure the equipment.

###

UO doctoral student Julia R. Widom was a co-leading author on the paper. Other co-authors with Pullerits, Marcus and Lonergan were Joachim Seibt of Lund University and UO graduate student Ian Moody.

The National Science Foundation (grant CHE-1307272 to Marcus) and U.S. Department of Energy (grant DE-SC0012363 to Lonergan) supported the project. The Wenner-Gren Foundation, Knut and Alice Wallenberg Foundation, Swedish Foundation for International Cooperation in Research and Higher Education, Swedish Energy Agency and Swedish Research Council funded the Lund University researchers.

####

For more information, please click here

Contacts:
Jim Barlow

541-346-3481

Sources:
Andrew H. Marcus
professor of physical chemistry and head of the
Department of Chemistry and Biochemistry
541-346-4809


Mark C. Lonergan
professor
physical and materials chemistry
541-346-4748

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project