Home > Press > Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel
![]() |
| Scientists are getting closer to copying plants' ability to convert sunlight into fuel. Credit: Purestock/Thinkstock |
Abstract:
For years, scientists have been pursuing "artificial leaf" technology, a green approach to making hydrogen fuel that copies plants' ability to convert sunlight into a form of energy they can use. Now, one team reports progress toward a stand-alone system that lends itself to large-scale, low-cost production. They describe their nanowire mesh design in the journal ACS Nano.
Peidong Yang, Bin Liu and colleagues note that harnessing sunlight to split water and harvest hydrogen is one of the most intriguing ways to achieve clean energy. Automakers have started introducing hydrogen fuel cell vehicles, which only emit water when driven. But making hydrogen, which mostly comes from natural gas, requires electricity from conventional carbon dioxide-emitting power plants. Producing hydrogen at low cost from water using the clean energy from the sun would make this form of energy, which could also power homes and businesses, far more environmentally friendly. Building on a decade of work in this area, Yang's team has taken one more step toward this goal.
The researchers took a page from the paper industry, using one of its processes to make a flat mesh out of light-absorbing semiconductor nanowires that, when immersed in water and exposed to sunlight, produces hydrogen gas. The scientists say that the technique could allow their technology to be scaled up at low cost. Although boosting efficiency remains a challenge, their approach -- unlike other artificial leaf systems -- is free-standing and doesn't require any additional wires or other external devices that would add to the environmental footprint.
###
The authors acknowledge funding from the U.S. Department of Energy and the Singapore-Berkeley Research Initiative for Sustainable Energy.
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Michael Bernstein
202-872-6042
Peidong Yang, Ph.D.
University of California, Berkeley
and Lawrence Berkeley National Laboratory
Berkeley, CA 94720
or
Bin Liu, Ph.D.
University of California, Berkeley
Berkeley, CA 94720
and the School of Chemical and Biomedical Engineering
Nanyang Technological University
Singapore 637459
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Fuel Cells
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Solar/Photovoltaic
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||