Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride

Periodic arrays of cone-shaped hexagonal boron nitride (hBN) nanoantennas, depicted magnified image above, were used to confine hyperbolic polaritons in all three dimensions. This enabled the researchers to fundamentally probe the novel optical properties within these materials and demonstrate the highly directional, low loss hyperbolic polaritons that are confined within the volume of the antennas. These results provide the first foray into natural hyperbolic materials as building blocks for nanophotonic devices in the mid-infrared to terahertz (THz) spectral range.
Photo: U.S. Naval Research Laboratory
Periodic arrays of cone-shaped hexagonal boron nitride (hBN) nanoantennas, depicted magnified image above, were used to confine hyperbolic polaritons in all three dimensions. This enabled the researchers to fundamentally probe the novel optical properties within these materials and demonstrate the highly directional, low loss hyperbolic polaritons that are confined within the volume of the antennas. These results provide the first foray into natural hyperbolic materials as building blocks for nanophotonic devices in the mid-infrared to terahertz (THz) spectral range.

Photo: U.S. Naval Research Laboratory

Abstract:
U.S. Naval Research Laboratory (NRL) scientists, in collaboration with researchers from the University of Manchester, U.K.; Imperial College, London; University of California San Diego; and the National Institute of Material Science (NIMS), Japan, have demonstrated that confined surface phonon polaritons within hexagonal boron nitride (hBN) exhibit unique metamaterial properties that enable novel nanoscale optical devices for use in optical communications, super-resolution imaging, and improved infrared cameras and detectors.

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride

Washington, DC | Posted on November 20th, 2014

Metamaterials are artificial composites of various materials designed to exhibit optical properties not anticipated in nature. One such property is hyperbolicity, whereby a material exhibits both metallic- and dielectric-like optical responses simultaneously along different crystal axes. These hyperbolic metamaterials are the basis for many potential applications such as 'hyperlenses,' used for imaging of nanoscale objects not observable using conventional optics.

"Our examination into the characteristics of hBN reveal the first experimental observation of sub-diffractional guided waves confined in all three dimensions, using a natural hyperbolic material," said Joshua Caldwell, Ph.D., Electronics Science and Technology Division, Power Electronics Branch. "This may, in turn, lead to the development of disruptive technologies such as the nanoscale equivalent of an optical fiber due to the volume-bound confinement of sub-diffractional modes within hBN."

Optic phonons, or crystal vibrations that can be excited with infrared light, can also be used to confine light to dimensions much smaller than the wavelength of light, while maintaining record-high efficiencies. These surface phonon polaritons are analogous to electron oscillations in metals or doped-semiconductors, called plasmons, but offer the benefit of low losses and operation in the infrared to terahertz spectral regions.

As a van der Waels crystal—a layered crystal structure similar to graphene or graphite—hBN was demonstrated to be two orders of magnitude more efficient than hyperbolic metamaterials shown to date, says Caldwell. Unlike metallic/dielectric hyperbolic metamaterials, hBN also provides the additional functionality of both types of hyperbolicity, allowing both the in-plane and out-of-plane crystal axes to behave metallic- (reflective) or dielectric-like (transparent) simply by changing the wavelength of the exciting light. This mixing of both types of hyperbolic behavior is to this point unique and allowed the fundamental comparison of antennas within these two regimes.

Using the natural hyperbolic behavior of hBN, the researchers were able to demonstrate that light could also be confined within optical antennas—up to 86 times smaller than the wavelength of light, for instance confinement of 6.8 micrometers of light into a 0.08 micrometer tall antenna—while maintaining record-high efficiencies due to the low-loss nature of the dielectric crystal.

The researchers were able to further demonstrate that the resonance wavelength of the hyperbolic polaritons confined within these antennae was dependent only upon the aspect ratio (height/diameter), and was nominally independent upon the actual size and/or shape—demonstrating that antennas could be defined for a given application simply by controlling this ratio, thereby making them compatible to a wide array of device form-factors. This could enable frequency selective operation and nanophotonic circuits, as well as provide an operational material for mid-infrared imaging of nanoscale objects.

The research team also demonstrated that the resonance response exhibited not a single mode, but four separate series, and according to Caldwell, a change in the wavelength and/or the angle of the incoming light with respect to the sample surface could isolate each series, providing the first complete description of these novel, three-dimensionally confined hyperbolic polariton modes.

Further discoveries found these breakthroughs could have an impact in areas such as enhanced infrared or molecular spectroscopy, improved functionality for nanophotonic circuits and devices for use in infrared cameras, detectors and weapons guidance systems, and tailored thermal emission sources.

The NRL Power Electronics Branch serves as the laboratory's principal resource for the science and technology of solid-state high-power electronic devices. The primary mission of the branch is to conduct research and development (R&D) programs in solid state electronics and related technologies that support U.S. Navy and Department of Defense (DoD) interests and capabilities in the full range of new weapons capabilities enabled by high-power solid state electronic devices. Moreover, the branch serves as the focal point of insertion of power electronics technology into Navy engineering development efforts.

####

About Naval Research Laboratory
The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of approximately 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 90 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

For more information, please click here

Contacts:
Daniel Parry

202-767-2541

Copyright © Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project