Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bio-Inspired Bleeding Control: Taking a cue from the human body’s own coagulation processes, researchers at UC Santa Barbara synthesize platelet-like nanoparticles that can do more than clot blood - See more at: http://www.news.ucsb.edu/2014/014506/bio-inspired-bleeding-control#s

Artist's rendering of synthetic platelets
Photo Credit: 
Peter Allen illustration
Artist's rendering of synthetic platelets

Photo Credit: Peter Allen illustration

Abstract:
Stanching the free flow of blood from an injury remains a holy grail of clinical medicine. Controlling blood flow is a primary concern and first line of defense for patients and medical staff in many situations, from traumatic injury to illness to surgery. If control is not established within the first few minutes of a hemorrhage, further treatment and healing are impossible.

Bio-Inspired Bleeding Control: Taking a cue from the human body’s own coagulation processes, researchers at UC Santa Barbara synthesize platelet-like nanoparticles that can do more than clot blood - See more at: http://www.news.ucsb.edu/2014/014506/bio-inspired-bleeding-control#s

Santa Barbara, CA | Posted on November 13th, 2014

At UC Santa Barbara, researchers in the Department of Chemical Engineering and at Center for Bioengineering (CBE) have turned to the human body's own mechanisms for inspiration in dealing with the necessary and complicated process of coagulation. By creating nanoparticles that mimic the shape, flexibility and surface biology of the body's own platelets, they are able to accelerate natural healing processes while opening the door to therapies and treatments that can be customized to specific patient needs.

"This is a significant milestone in the development of synthetic platelets, as well as in targeted drug delivery," said Samir Mitragotri, CBE director, who specializes in targeted therapy technologies. Results of the researchers' findings appear in the current issue of the journal ACS Nano.

The process of coagulation is familiar to anyone who has suffered even the most minor of injuries, such as a scrape or paper cut. Blood rushes to the site of the injury, and within minutes the flow stops as a plug forms at the site. The tissue beneath and around the plug works to knit itself back together and eventually the plug disappears.

But what we don't see is the coagulation cascade, the series of signals and other factors that promote the clotting of blood and enable the transition between a free-flowing fluid at the site and a viscous substance that brings healing factors to the injury. Coagulation is actually a choreography of various substances, among the most important of which are platelets, the blood component that accumulates at the site of the wound to form the initial plug.

"While these platelets flow in our blood, they're relatively inert," said graduate student researcher Aaron Anselmo, lead author of the paper. As soon as an injury occurs, however, the platelets, because of the physics of their shape and their response to chemical stimuli, move from the main flow to the side of the blood vessel wall and congregate, binding to the site of the injury and to each other. As they do so, the platelets release chemicals that "call" other platelets to the site, eventually plugging the wound.

But what happens when the injury is too severe, or the patient is on anti-coagulation medication, or is otherwise impaired in his or her ability to form a clot, even for a modest or minor injury?

That's where platelet-like nanoparticles (PLNs) come in. These tiny, platelet-shaped particles that behave just like their human counterparts can be added to the blood flow to supply or augment the patient's own natural platelet supply, stemming the flow of blood and initiating the healing process, while allowing physicians and other caregivers to begin or continue the necessary treatment. Emergency situations can be brought under control faster, injuries can heal more quickly and patients can recover with fewer complications.

"We were actually able to render a 65 percent decrease in bleeding time compared to no treatment," said Anselmo.

According to Mitragotri, the key lies in the PLNs' mimicry of the real thing. By imitating the shape and flexibility of natural platelets, PLNs can also flow to the injury site and congregate there. With surfaces functionalized with the same biochemical motifs found in their human counterparts, these PLNs also can summon other platelets to the site and bind to them, increasing the chances of forming that essential plug. In addition, and very importantly, these platelets are engineered to dissolve into the blood after their usefulness has run out. This minimizes complications that can arise from emergency hemostatic procedures.

"The thing about hemostatic agents is that you have to intervene to the right extent," said Mitragotri. "If you do too much, you cause problems. If you do too little, you cause problems."

These synthetic platelets also let the researchers improve on nature. According to Anselmo's investigations, for the same surface properties and shape, nanoscale particles can perform even better than micron-size platelets. Additionally, this technology allows for customization of the particles with other therapeutic substances — medications, therapies and such — that patients with specific conditions might need.

"This technology could address a plethora of clinical challenges," said Dr. Scott Hammond, director of UCSB's Translational Medicine Research Laboratories. "One of the biggest challenges in clinical medicine right now — which also costs a lot of money — is that we're living longer and people are more likely to end up on blood thinners. When an elderly patient presents at a clinic, it's a huge challenge because you have no idea what their history is and you might need an intervention."

With optimizable PLNs, physicians would be able to strike a finer balance between anticoagulant therapy and wound healing in older patients, by using nanoparticles that can target where clots are forming without triggering unwanted bleeding. In other applications, bloodborne pathogens and other infectious agents could be minimized with antibiotic-carrying nanoparticles. Particles could be made to fulfill certain requirements to travel to certain parts of the body — across the blood-brain barrier, for instance — for better diagnostics and truly targeted therapies.

Additionally, according to the researchers, these synthetic platelets cost relatively less, and have a longer shelf life than do human platelets — a benefit in times of widespread emergency or disaster, when the need for these blood components is at its highest and the ability to store them onsite is essential.

Further research into PLNs will involve investigations to see how well the technology and synthesis can scale up, as well as assessments into the more practical matters involved in translating the technology from the lab to the clinic, such as manufacturing, storage, sterility and stability as well as pre-clinical and clinical testing.

Research for the study was performed in collaboration with scientists at the Department of Biomedical Engineering at Case Western Reserve University in Cleveland, Ohio.

####

For more information, please click here

Contacts:
Sonia Fernandez

805-893-4765

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project