Home > Press > 'Swiss cheese' membrane with adjustable holes
![]() |
Changing membrane pore size by oxidation and reduction |
Abstract:
The pore size of the smart membranes can be adjusted from the outside: this is very attractive in applications like biosensors or chemical analysis. The ‘Swiss cheese' structure is characteristic of many polymer membranes and is now modified by introducing iron within the polymer. Using an electric signal or a chemical reaction, the pore size can be adjusted. The key to this is controlled adding or extracting of electrons to and from iron.
Cheap biosensor
Thanks to this adjustable pore size, the permeability and selectivity of the membrane can be tuned, for separation purposes or controlled release. The UT scientists see possibilities in analysis and separation of proteins, for example. An extra advantage of the new membranes is the change in colour that takes place. The process of protein detection and analysis becomes visible in an easy way, which may lead to a cheap type of biosensor.
Silver nanoparticles
Another application of the smart membrane is in catalysis. Here, it is possible to kill two birds with one stone. Whilst the pore size and permeabiliteit can be altered using a chemical reaction with silver salt, nanosize particles of silver are deposited on the membrane at the same time. Silver is an important catalyst in many applications.
The membrane research is conducted by the Materials Science and Technology of Polymers group, led by Prof. Julius Vancso. This group is part of the MESA+ Institute for Nanotechnology of the University of Twente.
Full bibliographic information
Kaihuan Zhang, Xueling Feng, Dr. Xiaofeng Sui, Dr. Mark A. Hempenius and Prof. G. Julius Vancso, Breathing Pores on Command: Redox-Responsive Spongy Membranes from Poly(ferrocenylsilane)s, Angewandte Chemie International Edition, DOI: 10.1002/anie.201408010
####
For more information, please click here
Contacts:
Wiebe van der Veen
+31612185692
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |