Home > Press > QuantumWise guides the semiconductor industry towards the atomic scale
Polycrystalline model of copper with grain boundaries, built in and visualized by Virtual NanoLab. The structure contains over 1 million atoms, but can readily be calculated using ATK-Classical. |
Abstract:
QuantumWise has released a new version of their software platform for atomic-scale modeling, Virtual NanoLab, and the simulation engine Atomistix ToolKit. The focus of this release is applications to semiconductor problems.
Over the past 24 months, QuantumWise has acquired several new customers within the semiconductor industry who are looking to the company for solutions on atomic-scale modeling. The need for a detailed understanding of new materials and novel device structures is growing rapidly as the traditional models provided by TCAD (Technology Computer Aided Design) are starting to fail, due to the fact that they don't encapsulate the detailed physics on the nanoscale.
"Many of the new features in the 2014 version are developed in direct response to urgent requests from our key customers in the semiconductor industry", says Anders Blom, Chief Customer Officer at QuantumWise. "We have focused on developing solutions that enable them to use atomic-scale modeling in their research and development of nanoscale devices as efficiently as possible. This involves both particular features and guidance in the form of new public tutorials and consultancy work performed with individual customers."
First-principles simulations of a metal-semiconductor (NiSi2/Si) interface with an accurate band gap for the doped semiconductor side, showing a Schottky barrier formation at the interface.
New features in the 2014 release
The new features involve spin-orbit interaction and Meta-GGA for accurate first-principles prediction of band structures of both bulk semiconductor materials and confined structures like nanowires. For such systems it is important to consider surface passivation and doping, and new methods have been added for this. Moreover, the inclusion of noncollinear spin enables the computation of spin transfer torque and other properties of magnetic tunnel junctions, a possible replacement of memory cells in the future. The new version of ATK is up to 35% faster for density functional theory (DFT) and tight-binding calculations.
Noncollinear model for a atomic wire contact in nickel.
ATK 2014 also expands the types of problems that can be studied with the software by making it possible to compute mechanical and thermal properties, in addition to the electronic transport properties that have been the hallmark of ATK for over 10 years. These new features have been developed in collaboration with the Fraunhofer SCAI institute in Bonn, Germany, in a project funded by the European Union under the Eurostars program. In this project, ATK has been expanded with a new module called ATK-Classical, with the capability to use empirical potentials to perform e.g. molecular dynamics simulations.
With a particular focus on semiconductor problems, new tools have also been designed to use these classical potentials to study elastic properties, thermal transport across grain boundaries, creep strain in polycrystalline structures, and other properties that are relevant for materials for modern semiconductor materials. This list will be further expanded during the remaining 6 months of the project, to consider e.g. ion implantation and crystal growth simulations, as well as dopant diffusion.
rom interface to platform
Another major new development in the 2014 release is that Virtual NanoLab has been expanded to act as a graphical user interface for other codes, like VASP, Quantum Espresso, LAMMPS, etc. These software packages are very popular both in academic and industrial communities, but suffer from a lack of a good front-end. Virtual NanoLab solves this problem by providing a low-cost professional graphical user interface that allows scientists to work more efficiently with the codes.
Instead of battling input file formats and manipulating large data output files manually, users can design advanced structures in an interactive high-performance 3D graphical builder, and automatically generate run-ready input files for literally any external code. When the calculation is done it is easy to import the output files to plot the results and further analyze the data. The Virtual NanoLab platform is available for Linux, Windows and now also Mac OS.
####
For more information, please click here
Contacts:
QuantumWise A/S
Lersø Parkallé 107
2100 Copenhagen
Denmark
CCO, Anders Blom
Cell: +45 31557742
Telefon: +45 699 01 888
Fax: +45 698 02 801
CVR: 27398987
anna Fock
Phone: 69901888
Copyright © QuantumWise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Link for VNL-ATK 2014 release letter:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Software
Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022
Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022
Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||