Home > Press > Novel approach to magnetic measurements atom-by-atom
![]() |
Abstract:
Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate handle over magnetic properties of nano-structures for future applications. In an article published in Physical Review Letters researchers propose a new method, utilizing properties of the quantum world - the phase of the electron beam - to detect magnetism with atom-by-atom precision.
The electron microscope is a fascinating instrument. It uses a highly accelerated electron beam, which passes right through the sample. The way how the beam scatters in that process, gives scientists a whole lot of information about the sample itself. Today it allows us to watch individual atoms and distinguish them by their atomic number. Scientists even learned how to extract a position of every single atom in a nanoparticle. Much of this became possible thanks to the invention of an aberration corrector - a device, which sharpens the image of microscope, the same way as glasses help our eyes.
There is however one domain, where microscopy is still relatively in its beginnings and that is the study of magnetic properties. A team of three scientists, Jan Rusz from Uppsala University, Sweden, Juan-Carlos Idrobo from Oak Ridge National Laboratory, USA, and Somnath Bhowmick from Indian Institute of Technology, India, have proposed a new way, which should bring the resolution in magnetic studies on par with watching individual atoms.
The trick lies in an inovative use of the aberration corrector - "the glasses of the microscope". It is used to correct all errors of the microscope optics, except for one specific distortion, which is tuned to the symmetry of the measured crystal. Imagine your glasses intentionally curved in a specific way, which allows you to see something, that you could not spot before. In the strange world of quantum mechanics this is exactly what happens. The distortion enhances the magnetic signal, which can be then easily measured.
"With this new method, we bring the atomic resolution magnetic measurements to about 400 laboratories world-wide, which are equipped with modern scanning transmission electron microscopes with aberration correctors", says Jan Rusz, and expects that the first experimental confirmations will come very soon.
###
Ján Rusz, Juan-Carlos Idrobo, Somnath Bhowmick (2014) Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe, Physical Review Letters, 113, 145501 DOI: 10.1103/PhysRevLett.113.145501
####
For more information, please click here
Contacts:
Jan Rusz
46-701-679-376
Copyright © Uppsala University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |