Home > Press > New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment
Koray Aydin |
Abstract:
Biological sensors, or biosensors, are like technological canaries in the coalmine. By converting a biological response into an optical or electrical signal, they can alert us to dangers in our external and internal environments. They can sense toxic chemicals and particles in the air and enzymes, molecules, and antibodies in the body that could indicate diabetes, cancer, and other diseases.
An optical biosensor works by absorbing a specific bandwidth of light and shifting the spectrum when it senses minor changes in the environment. The narrower the band of absorbed light is, the more sensitive the biosensor.
"Currently, plasmonic absorbers used in biosensors have a resonant bandwidth of 50 nanometers," said Koray Aydin, assistant professor of electrical engineering and computer science in the McCormick School of Engineering. "It is significantly challenging to design absorbers with narrower bandwidths."
Aydin and his team have created a new nanostructure that absorbs a very narrow spectrum of light—having a bandwidth of just 12 nanometers. This ultranarrow band absorber can be used for a variety of applications, including better biosensors.
"We believe that our unique narrowband absorber design will enhance the sensitivity of biosensors," Aydin said. "It's been a challenge to sense very small particles or very low concentrations of a substance."
This research was described in the paper "Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces," published in the July 29 issue of ACS Nano.
Typical absorber designs use two metal sheets with a non-metallic insulating material in between. By using nanofabrication techniques in the lab, Aydin's team found that removing the insulating layer—leaving only metallic nanostructures—caused the structure to absorb a much narrower band of light. The absorption of light is also high, exceeding 90 percent at visible frequencies.
Aydin said this design can also be used in applications for photothermal therapy, thermo-photovoltaics, heat-assisted magnetic recording, thermal emission, and solar-steam generation.
"The beauty of our design is that we found a way to engineer the material by using a different substrate," Aydin said.
####
For more information, please click here
Contacts:
Megan Fellman
847-491-3115
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||