Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research mimics brain cells to boost memory power

Dr Sharath Sriram, RMIT University
Dr Sharath Sriram, RMIT University

Abstract:
RMIT University researchers have brought ultra-fast, nano-scale data storage within striking reach, using technology that mimics the human brain.

Research mimics brain cells to boost memory power

Melbourne, Australia | Posted on September 30th, 2014

The researchers have built a novel nano-structure that offers a new platform for the development of highly stable and reliable nanoscale memory devices.

The pioneering work will feature on a forthcoming cover of prestigious materials science journal Advanced Functional Materials (11 November).

Project leader Dr Sharath Sriram, co-leader of the RMIT Functional Materials and Microsystems Research Group, said the nanometer-thin stacked structure was created using thin film, a functional oxide material more than 10,000 times thinner than a human hair.

"The thin film is specifically designed to have defects in its chemistry to demonstrate a ‘memristive' effect - where the memory element's behaviour is dependent on its past experiences," Dr Sriram said.

"With flash memory rapidly approaching fundamental scaling limits, we need novel materials and architectures for creating the next generation of non-volatile memory.

"The structure we developed could be used for a range of electronic applications - from ultrafast memory devices that can be shrunk down to a few nanometers, to computer logic architectures that replicate the versatility and response time of a biological neural network.

"While more investigation needs to be done, our work advances the search for next generation memory technology can replicate the complex functions of human neural system - bringing us one step closer to the bionic brain."

The research relies on memristors, touted as a transformational replacement for current hard drive technologies such as Flash, SSD and DRAM. Memristors have potential to be fashioned into non-volatile solid-state memory and offer building blocks for computing that could be trained to mimic synaptic interfaces in the human brain.

The research, which was supported by an Australian Research Council Discovery grant, was a collaboration between members of the Functional Materials and Microsystems Research Group and Professor Dmitri Strukov from the University of California, Santa Barbara.

####

About RMIT University
RMIT University is a global university of technology and design, focused on creating solutions that transform the future for the benefit of people and their environments.

One of Australia’s original educational institutions founded in 1887, RMIT is now the nation’s largest and most internationalised tertiary institution with more than 82,000 students.

The University enjoys an international reputation for excellence in professional and practical education, applied research, and engagement with the needs of industry and the cities in which it is located.

RMIT has three campuses in Melbourne, two campuses in Vietnam and an office in Barcelona, Spain. The University also offers programs through partners in Singapore, Hong Kong, mainland China, Indonesia, Sri Lanka, Spain and Germany, and enjoys research and industry partnerships on every continent.

RMIT is ranked in the top 15 among all Australian universities (2013 QS World University Rankings) and has a 5-Star QS ranking for excellence in higher education.

In 2013, RMIT was named International Education Provider of the Year in the inaugural Victorian International Education Awards.

For more information, please click here

Contacts:
David Glanz


For media enquiries:
Gosia Kaszubska
(03) 9925 3176
or 0417 510 735

For interviews:
Dr Sharath Sriram
0403 596 934

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic informationCover story, Advanced Functional Materials, 11 November.

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project