Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites

Stacked (top) and in-plane nanomaterials self-assemble in two ways, depending on the temperature at which they're grown, according to Rice University researchers who led the project. The semiconducting materials show promise for a new generation of "pixel" electronics. In the illustration, green spheres are tungsten, purple are molybdenum and yellow are sulfur.Credit: Ajayan Group/Rice University
Stacked (top) and in-plane nanomaterials self-assemble in two ways, depending on the temperature at which they're grown, according to Rice University researchers who led the project. The semiconducting materials show promise for a new generation of "pixel" electronics. In the illustration, green spheres are tungsten, purple are molybdenum and yellow are sulfur.

Credit: Ajayan Group/Rice University

Abstract:
A little change in temperature makes a big difference for growing a new generation of hybrid atomic-layer structures, according to scientists at Rice University, Oak Ridge National Laboratory, Vanderbilt University and Pennsylvania State University.

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites

Houston, TX | Posted on September 29th, 2014

Rice scientists led the first single-step growth of self-assembled hybrid layers made of two elements that can either be side by side and one-atom thick or stacked atop each other. The structure's final form can be tuned by changing the growth temperature.

The discovery reported online this week in Nature Materials could lead to what Rice materials scientist Pulickel Ajayan calls "pixel engineering": atomically thin semiconductors with no limit to their potential for use in optoelectronic devices.

The researchers led by Ajayan and Wu Zhou, a materials scientist at Oak Ridge, discovered the interesting new composites when they combined the growth of two-dimensional molybdenum disulfide and tungsten disulfide through chemical vapor deposition. In this process, specific gases are heated in a furnace, where their atoms gather in an orderly fashion around a catalyst to form the crystalline material.

High-temperature growth - about 850 degrees Celsius (1,563 degrees Fahrenheit) - yielded vertically stacked bilayers, with tungsten on top. At lower temperatures, about 650 degrees C (1,202 degrees F), the crystal lattices preferred to grow side by side. The interfaces in either material are sharp and clean, as seen under a scanning electron microscope and in spectroscopic studies.

"With the advent of 2-D layered materials, people are trying to build artificial structures using graphene and now dichalcogenides as building blocks," Ajayan said. Because graphene is atomically thin and flat and dichalcogenides like molybdenum disulfide are not quite that flat, there is some incompatibility when these are grown together -- but two dichalcogenides with different compositions could be compatible. "We show that depending on the conditions, we can combine two dichalcogenides to grow either in-plane hybrid or in stacks."

The monolayer composites have small but stable band gaps, while the stacked composite layers show modified electronic properties such as enhanced photoluminescence, which will be useful for electronics that rely on optical signals.

"What's even more interesting is that the layered structure has a particular lock-in stacking order," Zhou said. "When you stack 2-D materials by transferring layers, there's no way to control their orientation to one another. That impacts their electronic properties. In this paper, we demonstrate that in a certain window, we can get a particular stacking order during growth, with a particular orientation."

The new materials could be used for vertically stacked field-effect transistors as well as electronic devices only a few atoms thick, he said.

"We should be able to tweak certain regions to control certain functions, like light or terahertz emission," said Robert Vajtai of Rice, a co-author of the study. "The whole idea, really, is to create domains with different electronic characters within a single layer."

"Our goal is to build fully functional electronic devices on a single plane, or maybe a few layers," added Mauricio Terrones, a co-author from Penn State. "What we've accomplished means that pretty much any architecture for devices is now possible on a single atomic layer. And that's remarkable."

Co-authors are graduate students Yongji Gong, Gang Shi, Sidong Lei and Gonglan Ye and postdoctoral researcher Xiaolong Zou; Jun Lou, an associate professor and associate department chair of materials science and nanoengineering; and Boris Yakobson, the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry, all of Rice; Junhao Lin and Sokrates Pantelides of Oak Ridge and Vanderbilt University; Xingli Wang, Beng Kang Tay and Zheng Liu of Nanyang Technological University, Singapore; graduate student Zhong Lin of Pennsylvania State University; and Humberto Terrones, the Rayleigh Endowed Chair Professor of Physics at Rensselaer Polytechnic Institute.

Vajtai is a faculty fellow at Rice. Mauricio Terrones is a professor of physics, chemistry, materials science and engineering at Penn State. Ajayan is Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry and chair of the Department of Materials Science and NanoEngineering.

The Army Research Office, the Department of Energy, the National Science Foundation, the Microelectronics Advanced Research Corp., the Defense Advanced Research Projects Agency, the U.S. Office of Naval Research and the Ministry of Education Academic Research Fund and Silicon Technologies Center of Excellence, Singapore, supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Ajayan Group:

The STEM Group at Oak Ridge National Laboratory (Zhou):

Mauricio Terrones:

Rice Department of Materials Science and NanoEngineering:

Related News Press

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project