Home > Press > 'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites
Stacked (top) and in-plane nanomaterials self-assemble in two ways, depending on the temperature at which they're grown, according to Rice University researchers who led the project. The semiconducting materials show promise for a new generation of "pixel" electronics. In the illustration, green spheres are tungsten, purple are molybdenum and yellow are sulfur. Credit: Ajayan Group/Rice University |
Abstract:
A little change in temperature makes a big difference for growing a new generation of hybrid atomic-layer structures, according to scientists at Rice University, Oak Ridge National Laboratory, Vanderbilt University and Pennsylvania State University.
Rice scientists led the first single-step growth of self-assembled hybrid layers made of two elements that can either be side by side and one-atom thick or stacked atop each other. The structure's final form can be tuned by changing the growth temperature.
The discovery reported online this week in Nature Materials could lead to what Rice materials scientist Pulickel Ajayan calls "pixel engineering": atomically thin semiconductors with no limit to their potential for use in optoelectronic devices.
The researchers led by Ajayan and Wu Zhou, a materials scientist at Oak Ridge, discovered the interesting new composites when they combined the growth of two-dimensional molybdenum disulfide and tungsten disulfide through chemical vapor deposition. In this process, specific gases are heated in a furnace, where their atoms gather in an orderly fashion around a catalyst to form the crystalline material.
High-temperature growth - about 850 degrees Celsius (1,563 degrees Fahrenheit) - yielded vertically stacked bilayers, with tungsten on top. At lower temperatures, about 650 degrees C (1,202 degrees F), the crystal lattices preferred to grow side by side. The interfaces in either material are sharp and clean, as seen under a scanning electron microscope and in spectroscopic studies.
"With the advent of 2-D layered materials, people are trying to build artificial structures using graphene and now dichalcogenides as building blocks," Ajayan said. Because graphene is atomically thin and flat and dichalcogenides like molybdenum disulfide are not quite that flat, there is some incompatibility when these are grown together -- but two dichalcogenides with different compositions could be compatible. "We show that depending on the conditions, we can combine two dichalcogenides to grow either in-plane hybrid or in stacks."
The monolayer composites have small but stable band gaps, while the stacked composite layers show modified electronic properties such as enhanced photoluminescence, which will be useful for electronics that rely on optical signals.
"What's even more interesting is that the layered structure has a particular lock-in stacking order," Zhou said. "When you stack 2-D materials by transferring layers, there's no way to control their orientation to one another. That impacts their electronic properties. In this paper, we demonstrate that in a certain window, we can get a particular stacking order during growth, with a particular orientation."
The new materials could be used for vertically stacked field-effect transistors as well as electronic devices only a few atoms thick, he said.
"We should be able to tweak certain regions to control certain functions, like light or terahertz emission," said Robert Vajtai of Rice, a co-author of the study. "The whole idea, really, is to create domains with different electronic characters within a single layer."
"Our goal is to build fully functional electronic devices on a single plane, or maybe a few layers," added Mauricio Terrones, a co-author from Penn State. "What we've accomplished means that pretty much any architecture for devices is now possible on a single atomic layer. And that's remarkable."
Co-authors are graduate students Yongji Gong, Gang Shi, Sidong Lei and Gonglan Ye and postdoctoral researcher Xiaolong Zou; Jun Lou, an associate professor and associate department chair of materials science and nanoengineering; and Boris Yakobson, the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry, all of Rice; Junhao Lin and Sokrates Pantelides of Oak Ridge and Vanderbilt University; Xingli Wang, Beng Kang Tay and Zheng Liu of Nanyang Technological University, Singapore; graduate student Zhong Lin of Pennsylvania State University; and Humberto Terrones, the Rayleigh Endowed Chair Professor of Physics at Rensselaer Polytechnic Institute.
Vajtai is a faculty fellow at Rice. Mauricio Terrones is a professor of physics, chemistry, materials science and engineering at Penn State. Ajayan is Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry and chair of the Department of Materials Science and NanoEngineering.
The Army Research Office, the Department of Energy, the National Science Foundation, the Microelectronics Advanced Research Corp., the Defense Advanced Research Projects Agency, the U.S. Office of Naval Research and the Ministry of Education Academic Research Fund and Silicon Technologies Center of Excellence, Singapore, supported the research.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The STEM Group at Oak Ridge National Laboratory (Zhou):
Rice Department of Materials Science and NanoEngineering:
Related News Press |
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||