Home > Press > University of Electro-Communications research: High density quantum dots for powerful solar cells
Abstract:
The September 2014 issue of the University of Electro-Communications e-Bulletin includes research highlights on self-organized indium arsenide quantum dots for solar cells; silicon nanophotonics; solutions to internet congestion; and humanizing robots.
Feature article
Koichi Yamaguchi
Nanotechnology for real world applications: Self-organized indium arsenide quantum dots for solar cells
www.ru.uec.ac.jp/e-bulletin/feature/2014/self-organized-indium-arsenide-quantum-dots-for-solar-cells.html
Kouichi Yamaguchi is internationally recognized for his pioneering research on the fabrication and applications of 'semiconducting quantum dots' (QDs). "We exploit the 'self-organization' of semiconducting nanocrystals by the 'Stranski-Krasnov (SK) mode of crystal growth for producing ordered, highly dense, and highly uniform quantum dots," explains Yamaguchi. "Our 'bottom-up' approach yields much better results than the conventional photolithographic or 'top-down' methods widely used for the fabrication of nano-structures."
InAs QD density: 1.0×1012 cm-2
Research Highlights
Silicon nanophotonics: controlling photoluminescence for better devices
www.ru.uec.ac.jp/e-bulletin/research-highlights/2014/controlling-photoluminescence-for-better-devices.html
Okuno and his colleagues fabricated silicon nanowire arrays by metal-assisted chemical etching, an approach that is simple and cost-effective.
Micromanipulators: Taking the future in hand
www.ru.uec.ac.jp/e-bulletin/research-highlights/2014/taking-the-future-in-hand.html
Now, Sungwan Boksuwan and co-workers at the University of Electro-Communications in Tokyo, together with scientists in Thailand, have created a new robust two-dimensional handheld micromanipulator for use in cell manipulation.
Depth perception - understanding ambiguities
www.ru.uec.ac.jp/e-bulletin/research-highlights/2014/depth-perception-understanding-ambiguities.html
Binocular vision allows us to gauge depth. For example a dot directly ahead of the left eye will be at an angle to the right that decreases with distance. So how, ask Eiichi Mitsukura and Shunji Satoh at the University of Electro-Communications in Tokyo, can we estimate the depth of black or white paper? With no pattern or texture on the paper there should be no way of determining its contours. They turned to the computational tools used for filling in blind spots for an answer.
nternet protocol networks: Optimizing link reinforcements
http://www.ru.uec.ac.jp/e-bulletin/research-highlights/2014/optimizing-link-reinforcements.html
At any given moment in time, a network can be represented by a series of nodes and links. Each link is given a 'weight' - a measure of the link's quality of service. The aim of an internet engineer is to keep the links as uncongested as possible, allowing as much data as possible to flow freely at any one time.
Topics
Intelligent robots as models for studying human communication
www.ru.uec.ac.jp/e-bulletin/topics/2014/intelligent-robots-as-models-for-studying-human-communication.html
Visions of reality: Insights into information processing by the brain
www.ru.uec.ac.jp/e-bulletin/topics/2014/insights-into-information-processing-by-the-brain.html
####
About University of Electro-Communications
The University of Electro-Communications (UEC) in Tokyo is a small, luminous university at the forefront of applied sciences, engineering, and technology research. Its roots go back to the Technical
Institute for Wireless Commutations, which was established in 1918 by the Wireless Association to train so-called wireless engineers in maritime communications in response to the Titanic disaster in 1912. In 1949, the UEC was established as a national university by the Japanese Ministry of Education,and moved in 1957 from Meguro to its current Chofu campus Tokyo.
With approximately 4,000 students and 350 faculty, UEC is regarded as a small university, but with particular expertise in wireless communications, laser science, robotics, informatics, and material science, to name just a few areas of research.
The UEC was selected for the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Program for Promoting the Enhancement of Research Universities as a result of its strengths in three main areas: optics and photonics research, where we are number one for the number of joint publications with foreign researchers; wireless communications, which reflects our roots; and materials-based research, particularly on fuel cells.
For more information, please click here
Contacts:
International Public Relations
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585
Website: http://www.uec.ac.jp/
Copyright © University of Electro-Communications
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||