Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Material development on the nanoscale: Doped graphene nanoribbons with potential

Unlike graphene, which shows a wavelength-independent absorbance for visible light, light absorption can be increased enormously in a controlled way with graphene nanoribbons. This is achieved by setting the width of the graphene nanoribbons with atomic precision.
Unlike graphene, which shows a wavelength-independent absorbance for visible light, light absorption can be increased enormously in a controlled way with graphene nanoribbons. This is achieved by setting the width of the graphene nanoribbons with atomic precision.

Abstract:
Graphene is a semiconductor when prepared as an ultra-narrow ribbon - although the material is actually a conductive material. Researchers from Empa and the Max Planck Institute for Polymer Research have now developed a new method to selectively dope graphene molecules with nitrogen atoms. By seamlessly stringing together doped and undoped graphene pieces, they were able to form "heterojunctions" in the nanoribbons, thereby fulfilling a basic requirement for electronic current to flow in only one direction when voltage is applied - the first step towards a graphene transistor. Furthermore, the team has successfully managed to remove graphene nanoribbons from the gold substrate on which they were grown and to transfer them onto a non-conductive material.

Material development on the nanoscale: Doped graphene nanoribbons with potential

Switzerland | Posted on September 8th, 2014

Graphene possesses many outstanding properties: it conducts heat and electricity, it is transparent, harder than diamond and extremely strong. But in order to use it to construct electronic switches, a material must not only be an outstanding conductor, it should also be switchable between "on" and "off" states. This requires the presence of a so-called bandgap, which enables semiconductors to be in an insulating state. The problem, however, is that the bandgap in graphene is extremely small. Empa researchers from the laboratory thus developed a method some time ago to synthesise a form of graphene with larger bandgaps by allowing ultra-narrow graphene nanoribbons to "grow" via molecular self-assembly.



Graphene nanoribbons made of differently doped segments

The researchers, led by Roman Fasel, have now achieved a new milestone by allowing graphene nanoribbons consisting of differently doped subsegments to grow. Instead of always using the same "pure" carbon molecules, they used additionally doped molecules - molecules provided with "foreign atoms" in precisely defined positions, in this case nitrogen. By stringing together "normal" segments with nitrogen-doped segments on a gold (Au (111)) surface, so-called heterojunctions are created between the individual segments. The researchers have shown that these display similar properties to those of a classic p-n-junction, i.e. a junction featuring both positive and negative charges across different regions of the semiconductor crystal, thereby creating the basic structure allowing the development of many components used in the semiconductor industry. A p-n junction causes current to flow in only one direction. Because of the sharp transition at the heterojunction interface, the new structure also allows electron/hole pairs to be efficiently separated when an external voltage is applied, as demonstrated theoretically by theorists at Empa and collaborators at Rensselaer Polytechnic Institute The latter has a direct impact on the power yield of solar cells. The researchers describe the corresponding heterojunctions in segmented graphene nanoribbons in the recently published issue of "Nature Nanotechnology".

Transferring graphene nanoribbons onto other substrates

In addition, the scientists have solved another key issue for the integration of graphene nanotechnology into conventional semiconductor industry: how to transfer the ultra-narrow graphene ribbons onto another surface? As long as the graphene nanoribbons remain on a metal substrate (such as gold used here) they cannot be used as electronic switches. Gold conducts and thus creates a short-circuit that "sabotages" the appealing semiconducting properties of the graphene ribbon. Fasel's team and colleagues at the Max-Planck-Institute for Polymer Research in Mainz have succeeded in showing that graphene nanoribbons can be transferred efficiently and intact using a relatively simple etching and cleaning process onto (virtually) any substrate, for example onto sapphire, calcium fluoride or silicon oxide.


Graphene is thus increasingly emerging as an interesting semiconductor material and a welcome addition to the omnipresent silicon. The semiconducting graphene nanoribbons are particularly attractive as they allow smaller and thus more energy efficient and faster electronic components than silicon. However, the generalized use of graphene nanoribbons in the electronics sector is not anticipated in the near future, due in part to scaling issues and in part to the difficulty of replacing well-established conventional silicon-based electronics. Fasel estimates that it may still take about 10 to 15 years before the first electronic switch made of graphene nanoribbons can be used in a product.

Graphene nanoribbons for photovoltaic components

Photovoltaic components could also one day be based on graphene. In a second paper published in «Nature Communications», Pascal Ruffieux - also from the Empa laboratory - and his colleagues describe a possible use of graphene strips, for instance in solar cells. Ruffieux and his team have noticed that particularly narrow graphene nanoribbons absorb visible light exceptionally well and are therefore highly suitable for use as the absorber layer in organic solar cells. Compared to "normal" graphene, which absorbs light equally at all wavelengths, the light absorption in graphene nanoribbons can be increased enormously in a controlled way, whereby researchers "set" the width of the graphene nanoribbons with atomic precision.

####

For more information, please click here

Contacts:
Martina Peter

41-587-654-987

Copyright © EMPA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project