Home > Press > Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials
Dr. Klaper, Associate Professor, School of Freshwater Sciences, University of Wisconsin-Milwaukee. |
Abstract:
Researchers at The School of Freshwater Science, University of Wisconsin-Milwaukee, USA, are using NanoSight Nanoparticle Tracking Analysis (NTA) from Malvern Instruments to investigate the effects of nanoparticle contaminants on freshwater organisms. The work, which is at the forefront of nanotoxicity testing, has focused on using the unique size, concentration and visualization capabilities provided by NTA to monitor how specific changes in nanoparticle surface chemistry influence the impact of the particles on molecular species in environmental media. NTA is used as part of an ensemble of analytical techniques that includes Dynamic Light Scattering (DLS) with the Malvern Zetasizer Nano, which is used for its sizing capabilities and to monitor overall formulation stability.
"The goal of our research is to provide a greater understanding of the influence of nanomaterials on the environment and advance the scientific theory that underpins nanoparticle health and safety," said Dr. Klaper, Associate Professor, School of Freshwater Sciences, University of Wisconsin-Milwaukee. "Nanoparticles present unique challenges to toxicity testing compared with testing for chemical contaminants because of their particulate nature and novel behaviors. Nanoparticle Tracking Analysis has provided us with an instantaneous way of looking at the behavior of the nanoparticles within a biological medium, providing insight unachievable with alternative analysis techniques."
NanoSight NTA, now part of Malvern Instruments' nanoparticle characterization portfolio, is a unique method of characterizing nanoparticles within solution. Each particle is individually but simultaneously analyzed by direct observation and measurement of diffusion events. This particle-by-particle methodology produces high resolution results for particle size distribution and concentration, while visual validation provides users with additional confidence in their data. Both particle size and concentration are measured. Used in concert with additional characterization techniques, such as the Zetasizer Nano, this holistic approach to characterization provides the breadth of analytical data required to inform the emerging health and safety aspect of nanomaterials before they are released into the environment.
"NTA has allowed us to really focus on how variations among nanoparticles, such as small changes in the surface chemistry, correlate to their behavior within an environmental medium and their interactions within organisms. One of the great things about the Nanoparticle Tracking Analysis system is the unique visualization capability which enables real time empirical insight into key particle behavior, such as the propensity and rate of aggregation, as opposed to alternative techniques with often lengthy procedures."
The research performed by Dr. Klaper and her team is only the first stage in optimizing the potential of the NanoSight NTA system, which has found widespread use in other areas for its unique capability to measure exosomes. "We're very interested in exosome research to determine protein changes that may occur once the nanoparticle interacts with the organism," added Dr Klaper. "So we anticipate that the next stage of our research will focus on using the NTA system to investigate how proteins and exuded cellular exosomes vary over time."
To learn more about Nanoparticle Tracking Analysis, please see www.malvern.com/nanosight.
For more details about The School of Freshwater Science at The University of Wisconsin-Milwaukee, please see home.freshwater.uwm.edu/klaperlab/
Malvern, Malvern Instruments, Zetasizer and NanoSight are registered trademarks of Malvern Instruments Ltd
####
About Malvern Instruments
Malvern provides the materials and biophysical characterization technology and expertise that enables scientists and engineers to understand and control the properties of dispersed systems. These systems range from proteins and polymers in solution, particle and nanoparticle suspensions and emulsions, through to sprays and aerosols, industrial bulk powders and high concentration slurries. Used at all stages of research, development and manufacturing, Malvern’s materials characterization instruments provide critical information that helps accelerate research and product development, enhance and maintain product quality and optimize process efficiency.
Our products reflect Malvern’s drive to exploit the latest technological innovations and our commitment to maximizing the potential of established techniques. They are used by both industry and academia, in sectors ranging from pharmaceuticals and biopharmaceuticals to bulk chemicals, cement, plastics and polymers, energy and the environment.
Malvern systems are used to measure particle size, particle shape, zeta potential, protein charge, molecular weight, mass, size and conformation, rheological properties and for chemical identification, advancing the understanding of dispersed systems across many different industries and applications.
Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, China, Japan and Korea, a joint venture in India, a global distributor network and applications laboratories around the world.
For more information, please click here
Contacts:
Trish Appleton
Kapler Communications
Phoenix House, Phoenix Park
Eaton Socon, Cambridgeshire, PE19 8EP, UK
Tel: +44 (0)1480 471059
Fax: +44 (0)1480 471069
USA contact:
Marisa Fraser
Malvern Instruments Inc.
117 Flanders Road
Westborough, MA 01581-1042 USA
Tel: +1 508 768 6400
Fax: +1 508 768 6403
Please send sales enquiries to:
Alison Vines
Malvern Instruments Ltd
Enigma Business Park, Grovewood Road
Malvern, Worcestershire WR14 1XZ UK
Tel: +44 (0) 1684 892456
Fax: +44 (0) 1684 892789
Copyright © Malvern Instruments
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||