Home > Press > Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery
Abstract:
Iranian researchers from Tarbiat Modarres University changed the liposome production process and increased the amount of genes entrapped in the structure of these nanocarriers.
The non-virus nanocarriers have neutral structure and very high stability and they protect entrapped genes against degrading enzymes.
In this research, some changes were made in the synthesis of liposomes and nanocarriers were produced that can entrap DNA molecules with very high efficiency (98%) in their absolutely neutral structure. The results have so far been reported only for cationic liposomes that are highly toxic and can only be used in-vivo.
The nanostructure is very stable, to the extent that no release of DNA has been observed from it after six months. DNA is trapped in aqueous environment inside the liposome. Therefore, degrading enzymes are not able to degrade DNA molecule, and as a result, DNA has very high stability inside the structure.
Among other advantages of the designed nanocarrier, mention can be made of its very high ability in gene delivery to bacterium cell. Therefore, it can be used in the treatment of infections caused by bacteria, which are resistant to medications. The nanostructure can also be used as an appropriate carrier to delivery medications in the treatment of human diseases. The research team is currently carrying out studies on gene delivery to bacterium cells through this system.
Taking into account the obtained results, the researchers are hopeful that liposomes derived from cellular membrane will have important role in drug and gene delivery in the near future; therefore, they will take the place of toxic cationic carriers that are currently used.
Results of the research have been published in Molecular Biotechnology, vol. 55, issue 2, October 2013, pp. 120-130.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |