Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New NIST metamaterial gives light a one-way ticket

This is a schematic of NIST's one-way metamaterial. Forward traveling green light (left) or red light passes through the multilayered block and comes out at an angle due to diffraction off of grates on the surface of the material. Light traveling in the opposite direction (right) is almost completely filtered by the metamaterial and can't pass through.

Credit: Xu/NIST
This is a schematic of NIST's one-way metamaterial. Forward traveling green light (left) or red light passes through the multilayered block and comes out at an angle due to diffraction off of grates on the surface of the material. Light traveling in the opposite direction (right) is almost completely filtered by the metamaterial and can't pass through.

Credit: Xu/NIST

Abstract:
The light-warping structures known as metamaterials have a new trick in their ever-expanding repertoire. Researchers at the National Institute of Standards and Technology (NIST) have built a silver, glass and chromium nanostructure that can all but stop visible light cold in one direction while giving it a pass in the other.* The device could someday play a role in optical information processing and in novel biosensing devices.

New NIST metamaterial gives light a one-way ticket

Gaithersburg, MD | Posted on July 2nd, 2014

In recent years, scientists have designed nanostructured materials that allow microwave or infrared light to propagate in only one direction. Such structures hold potential for applications in optical communication—for instance, they could be integrated into photonic chips that split or combine signals carried by light waves. But, until now, no one had achieved one-way transmission of visible light, because existing devices could not be fabricated at scales small enough to manipulate visible light's short wavelengths. (So-called "one-way mirrors" don't really do this—they play tricks with relative light levels.)

To get around that roadblock, NIST researchers Ting Xu and Henri Lezec combined two light-manipulating nanostructures: a multi-layered block of alternating silver and glass sheets and metal grates with very narrow spacings.

The silver-glass structure is an example of a "hyperbolic" metamaterial, which treats light differently depending on which direction the waves are traveling. Because the structure's layers are only tens of nanometers thick—much thinner than visible light's 400 to 700 nanometer wavelengths—the block is opaque to visible light coming in from outside. Light can, however, propagate inside the material within a narrow range of angles.

Xu and Lezec used thin-film deposition techniques at the NIST NanoFab user facility to build a hyperbolic metamaterial block.Guided by computer simulations, they fabricated the block out of 20 extremely thin alternating layers of silicon dioxide glass and silver. To coax external light into the layered material, the researchers added to the block a set of chromium grates with narrow, sub-wavelength spacings chosen to bend incoming red or green light waves just enough to propagate inside the block. On the other side of the block, the researchers added another set of grates to kick light back out of the structure, although angled away from its original direction.

While the second set of grates let light escape the material, their spacing was slightly different from that of the first grates. As a result, the reverse-direction grates bent incoming light either too much or not enough to propagate inside the silver-glass layers. Testing their structures, the researchers found that around 30 times more light passed through in the forward direction than in reverse, a contrast larger than any other achieved thus far with visible light.

Combining materials that could be made using existing methods was the key to achieving one-way transmission of visible light, Lezec says. Without the intervening silver-and-glass blocks, the grates would have needed to be fabricated and aligned more precisely than is possible with current techniques. "This three-step process actually relaxes the fabrication constraints," Lezec says.

In the future, the new structure could be integrated into photonic chips that process information with light instead of electricity. Lezec thinks the device also could be used to detect tiny particles for biosensing applications. Like the chrome grates, nanoscale particles also can deflect light to angles steep enough to travel through the hyperbolic material and come out the other side, where the light would be collected by a detector. Xu has run simulations suggesting such a scheme could provide high-contrast particle detection and is hoping to test the idea soon. "I think it's a cool device where you would be able to sense the presence of a very small particle on the surface through a dramatic change in light transmission," says Lezec.

####

For more information, please click here

Contacts:
Mark Esser

301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

*T. Xu and H.J. Lezec. Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nature Communications. 2014, 5, DOI: 10.1038/ncomms5141:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project