Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Technology using microwave heating may impact electronics manufacture

Continuous flow reactor
Continuous flow reactor

Abstract:
Engineers at Oregon State University have successfully shown that a continuous flow reactor can produce high-quality nanoparticles by using microwave-assisted heating - essentially the same forces that heat up leftover food with such efficiency.

Technology using microwave heating may impact electronics manufacture

Corvallis, OR | Posted on June 10th, 2014

Instead of warming up yesterday's pizza, however, this concept may provide a technological revolution.

It could change everything from the production of cell phones and televisions to counterfeit-proof money, improved solar energy systems or quick identification of troops in combat.

The findings, recently published in Materials Letters, are essentially a "proof of concept" that a new type of nanoparticle production system should actually work at a commercial level.

"This might be the big step that takes continuous flow reactors to large-scale manufacturing," said Greg Herman, an associate professor and chemical engineer in the OSU College of Engineering. "We're all pretty excited about the opportunities that this new technology will enable."

Nanoparticles are extraordinarily small particles at the forefront of advances in many biomedical, optical and electronic fields, but precise control of their formation is needed and "hot injection" or other existing synthetic approaches are slow, costly, sometimes toxic and often wasteful.

A "continuous flow" system, by contrast, is like a chemical reactor that moves constantly along. It can be fast, cheap, more energy-efficient, and offer lower manufacturing cost. However, heating is necessary in one part of the process, and in the past that was best done only in small reactors.

The new research has proven that microwave heating can be done in larger systems at high speeds. And by varying the microwave power, it can precisely control nucleation temperature and the resulting size and shape of particles.

"For the applications we have in mind, the control of particle uniformity and size is crucial, and we are also able to reduce material waste," Herman said. "Combining continuous flow with microwave heating could give us the best of both worlds - large, fast reactors with perfectly controlled particle size."

The researchers said this should both save money and create technologies that work better. Improved LED lighting is one possibility, as well as better TVs with more accurate colors. Wider use of solid state lighting might cut power use for lighting by nearly 50 percent nationally. Cell phones and other portable electronic devices could use less power and last longer on a charge.

The technology also lends itself well to creation of better "taggants," or compounds with specific infrared emissions that can be used for precise, instant identification - whether of a counterfeit $20 bill or an enemy tank in combat that lacks the proper coding.

In this study, researchers worked with lead selenide nanoparticles, which are particularly good for the taggant technologies. Other materials can be synthesized using this reactor for different applications, including copper zinc tin sulfide and copper indium diselenide for solar cells.

New Oregon jobs and businesses are already evolving from this work.

OSU researchers have applied for a patent on aspects of this technology, and are working with private industry on various applications. Shoei Electronic Materials, one of the collaborators, is pursuing "quantum dot" systems based on this approach, and recently opened new manufacturing facilities in Eugene, Ore., to use this synthetic approach for quantum dot enabled televisions, smartphones and other devices.

The research has been supported by the Air Force Research Laboratory, OSU Venture Funds, and the Oregon Nanoscience and Microtechnologies Institute, or ONAMI.

####

About Oregon State University
The OSU College of Engineering is among the nation¹s largest and most productive engineering programs. Since 1999, the college has more than tripled its research expenditures to $37.2 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

For more information, please click here

Contacts:
Greg Herman

541-737-2496

Copyright © Oregon State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project