Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Production of Nanobiosensor to Distinguish Aggressive Cancer Cells from Benign Cells

Abstract:
Iranian researchers from the Faculty of Electrical and Computer Engineering of Tehran University in association with researchers from Medical Nanotechnology Research Center of Shahid Beheshti University of Medical Sciences produced a new type of electrical nanosensor to detect a limited number of aggressive cancer cells among benign cells of intestine.

Production of Nanobiosensor to Distinguish Aggressive Cancer Cells from Benign Cells

Tehran, Iran | Posted on May 31st, 2014

The nanosensor has very high accuracy and doesn't need the use of chemical markers.

The nanosensor has been produced based on silicon nanograss. The sensor is able to detect highly accurately the presence of even five percent aggressive cancer cells among the whole sample being tested. Taking into account the complicated and difficult stages of sample preparation, the use of this nanosensor increases the rate of the experiment significantly. Among other advantages of the sensor, mention can be made of the lack of the use of chemical markers and cell painting, and low cost of the required devices.

The research was carried out with the cooperation of Medical Nanotechnology Research Center of Taleqani Hospital. In this research, a new pattern was obtained for the detection and classification of cancer in the sample by using different electrical signals created by the sensor. The method is a good help for complementary diagnosis, specially when it is not possible to detect the number of aggressive cancer cells in Pap Smear sample. The method can also be used for studying the effect of drugs on cancer cells based on electrical pattern.

Results of the research have been published in Biosensors and Bioelectronics, vol. 59, issue 1, March 2014, pp. 152-159.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project