Home > Press > Check out the assembly line of the future!: NSF's Center for Hierarchical Manufacturing proves good test bed for large-scale nanomanufacturing designs
![]() |
“Made to order,” a phrase that began with the service industry, is now vital to manufacturing's future. Manufacturing production has recently grown at its fastest pace in more than a decade, creating more economic value per dollar spent than any other sector. Adding to this surge is customization--the ability to quickly and efficiently make what you want when you want it. Rapid, efficient customization is becoming a reality for high-tech engineers, students and "maker" enthusiasts. Explore the remarkable advances that may transform manufacturing forever in this Special report.
Credit: NBC Learn, U.S. Patent and Trademark Office, and National Science Foundation |
Abstract:
There's no shortage of ideas about how to use nanotechnology, but one of the major hurdles is how to manufacture some of the new products on a large scale. With support from the National Science Foundation (NSF), University of Massachusetts (UMass) Amherst chemical engineer Jim Watkins and his team are working to make nanotechnology more practical for industrial-scale manufacturing.
One of the projects they're working on at the NSF Center for Hierarchical Manufacturing (CHM) is a roll-to-roll process for nanotechnology that is similar to what is used in traditional manufacturing. They're also designing a process to manufacture printable coatings that improve the way solar panels absorb and direct light. They're even investigating the use of self-assembling nanoscale products that could have applications for many industries.
"New nanotechnologies can't impact the U.S. economy until practical methods are available for producing products, using them in high volumes, at low cost. CHM is researching the fundamental scientific and engineering barriers that impede such commercialization, and innovating new technologies to surmount those barriers," notes Bruce Kramer, senior advisor in the NSF Engineering Directorate's Division of Civil, Mechanical and Manufacturing Innovation (CMMI), which funded the research.
"The NSF Center for Hierarchical Manufacturing is developing platform technologies for the economical manufacture of next generation devices and systems for applications in computing, electronics, energy conversion, resource conservation and human health," explains Khershed Cooper, a CMMI program director.
"The center creates fabrication tools that are enabling versatile and high-rate continuous processes for the manufacture of nanostructures that are systematically integrated into higher order structures using bottom-up and top-down techniques," Cooper says. "For example, CHM is designing and building continuous, roll-to-roll nanofabrication systems that can print, in high-volume, 3-D nanostructures and multi-layer nanodevices at sub-100 nanometer resolution, and in the process, realize hybrid electronic-optical-mechanical nanosystems."
The research in this episode was supported by NSF award #1025020, Nanoscale Science and Engineering Centers (NSEC): Center for Hierarchical Manufacturing.
Miles O'Brien, Science Nation Correspondent
Ann Kellan, Science Nation Producer
####
For more information, please click here
Contacts:
The National Science Foundation
4201 Wilson Boulevard
Arlington, Virginia 22230
USA Tel: (703) 292-5111
FIRS: (800) 877-8339
TDD: (800) 281-8749
Copyright © National Science Foundation (NSF)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |