Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Improved Supercapacitors for Super Batteries, Electric Vehicles: Researchers develop novel supercapacitor architecture that provides two times more energy and power compared to supercapacitors commercially available today

(a) Schematic illustration of the preparation process of RGM nanostructure foam. SEM images of (b–c) as-grown GM foam (d) Lightly loaded RGM, and (e) heavily loaded RGM.
(a) Schematic illustration of the preparation process of RGM nanostructure foam. SEM images of (b–c) as-grown GM foam (d) Lightly loaded RGM, and (e) heavily loaded RGM.

Abstract:
Researchers at the University of California, Riverside have developed a novel nanometer scale ruthenium oxide anchored nanocarbon graphene foam architecture that improves the performance of supercapacitors, a development that could mean faster acceleration in electric vehicles and longer battery life in portable electronics.

Improved Supercapacitors for Super Batteries, Electric Vehicles: Researchers develop novel supercapacitor architecture that provides two times more energy and power compared to supercapacitors commercially available today

Riverside, CA | Posted on May 19th, 2014

The researchers found that supercapacitors, an energy storage device like batteries and fuel cells, based on transition metal oxide modified nanocarbon graphene foam electrode could work safely in aqueous electrolyte and deliver two times more energy and power compared to supercapacitors commercially available today.

The foam electrode was successfully cycled over 8,000 times with no fading in performance. The findings were outlined in a recently published paper, "Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors," in the journal Nature Scientific Reports.

The paper was written by graduate student Wei Wang; Cengiz S. Ozkan, a mechanical engineering professor at UC Riverside's Bourns College of Engineering; Mihrimah Ozkan, an electrical engineering professor; Francisco Zaera, a chemistry professor; Ilkeun Lee, a researcher in Zaera's lab; and other graduate students Shirui Guo, Kazi Ahmed and Zachary Favors.

Supercapacitors (also known as ultracapacitors) have garnered substantial attention in recent years because of their ultra-high charge and discharge rate, excellent stability, long cycle life and very high power density.

These characteristics are desirable for many applications including electric vehicles and portable electronics. However, supercapacitors may only serve as standalone power sources in systems that require power delivery for less than 10 seconds because of their relatively low specific energy.

A team led by Cengiz S. Ozkan and Mihri Ozkan at UC Riverside are working to develop and commercialize nanostructured materials for high energy density supercapacitors.

High capacitance, or the ability to store an electrical charge, is critical to achieve higher energy density. Meanwhile, to achieve a higher power density it is critical to have a large electrochemically accessible surface area, high electrical conductivity, short ion diffusion pathways and excellent interfacial integrity. Nanostructured active materials provide a mean to these ends.

"Besides high energy and power density, the designed graphene foam electrode system also demonstrates a facile and scalable binder-free technique for preparing high energy supercapacitor electrodes," Wang said. "These promising properties mean that this design could be ideal for future energy storage applications."

####

For more information, please click here

Contacts:
Sean Nealon

951-827-1287
Twitter: seannealon
Additional Contacts

Cengiz Ozkan
Tel: 951-827-5016

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Automotive/Transportation

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project