Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Excellent Research at the Ceramics Workshop

Carbon structures in the nanometer and micrometer range are produced by pyrolysis of plastics in high-performance kilnsPhoto: KIT / A. P. Vogt
Carbon structures in the nanometer and micrometer range are produced by pyrolysis of plastics in high-performance kilns

Photo: KIT / A. P. Vogt

Abstract:
Ceramic vases and battery electrodes serve different purposes, but have an important production step in common: Only at very high temperatures are they given their excellent properties. For this reason, the chemist Andrew P. Vogt of KIT uses the kilns of the Majolika Ceramics Manufactory in Karlsruhe for his materials research project. He applies tailored plastic molecules to develop prototypes of nanostructured carbon materials for battery electrodes or chemical catalysts.

Excellent Research at the Ceramics Workshop

Karlsruhe, Germany | Posted on May 14th, 2014

"For my research, it is sheer luck that the kilns of the Majolika are located just around the corner of the campus," Andrew Vogt brims with enthusiasm. Already during his Ph. D. phase he developed processes to generate small structures in materials. Nanostructured materials may be applied as filters to clean contaminated water or as chemical catalysts. They might also be suited for batteries or electronics. Carbon rich materials can be nanostructured as well, where even thin samples do not tear and are easy to modify chemically.

To produce nanostructured materials, Vogt uses long-chain "polymer" molecules, i.e. plastics. With the help of additives, various polymer types with precisely adjusted properties can be produced. "Then, we have to carefully decompose the molecules to obtain carbon rich structures in vacuum tanks with extreme heat," Vogt states explaining the process of the so-called "pyrolysis". The kilns at Majolika have turned out to be a suitable tool for this purpose.

To successfully decompose the polymers and generate carbon rich structures, the temperature has to be controlled precisely at a particular rate of time. The samples are heated up to more than 800°C. "The Majolika operates high-performance kilns, whose temperature does not fluctuate," Vogt says. The kilns are equipped with very thick walls, because a constant temperature also is of great importance when baking and glazing large ceramic vases and tiles. Temperature fluctuations may cause the color to deviate or cracks to develop.

Vogt, who conducts research at the KIT Chair for Preparative Macromolecular Chemistry of Christopher Barner-Kowollik under a grant of the Alexander von Humboldt Foundation, is presently examining the novel carbon nanostructures for applicability. Stable, nanoporous filters, for instance, might be used for cleaning water or oil. Chemical catalysts might be applied for the production of chemicals or battery electrodes with enhanced properties. "We are only at the beginning, but conversations with colleagues at KIT have already revealed exciting perspectives," Barner-Kowollik and Vogt exclaim - summing up the status of research at the moment.

####

About Karlsruhe Institute of Technology
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. Research activities focus on energy, the natural and built environment as well as on society and technology and cover the whole range extending from fundamental aspects to application. With about 9000 employees, including nearly 6000 staff members in the science and education sector, and 24000 students, KIT is one of the biggest research and education institutions in Europe. Work of KIT is based on the knowledge triangle of research, teaching, and innovation.

For more information, please click here

Contacts:
Monika Landgraf
Karlsruher Institut für Technologie
+49 721 608

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project