Home > Press > Analysis of Electromagnetic Performance, Coupling of Couple Nanoholes
Abstract:
Iranian electronic engineers succeeded in analyzing electromagnetic performance of a sub-wavelength hole based on semi-static approximation.
The research presents a new approach to behavior and optical and electromagnetic interaction between two adjacent coupled nanoholes, which eases the analysis and modeling of optical properties of similar nanostructures that are commonly used in nanotechnology.
In this research, the researchers studied strong near-field optical interaction between two nanoholes with sub-wavelength of 100-200 nm2, which were caused by longitude and latitude arrangements on a thin film of gold with a thickness of 100 nm.
Optical properties of plasmonic nanoholes can be analyzed by using equivalent magnetic dipoles through this research. The research also proved that contrary to interaction between nanoparticles where electrical field vector has the dominant role, incident light magnetic field vector plays the dominant role in strong interactions of nanoholes. Therefore, new plans can be proposed to control and engineer optical properties of nanostructures containing nanopores or nanoholes.
The plan also provides a new method to analyze and design nanostructures based on nanoholes with sub-wavelength dimensions. Generally speaking, a new approach to optical and electromagnetic behavior of adjacent coupled nanoholes has been suggested, which eases the analysis and modeling of optical properties of similar nanostructures that are commonly used in nanotechnology.
The research was carried out in form of scientific cooperation between Khajeh Nasir Tousi University of Technology and Iran University of Science and Technology.Results of the research have been published in Optics Express, vol. 21, issue 26, December 2013, pp. 31769-31781.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |