Home > Press > Diamond Defect Boosts Quantum Technology
Abstract:
New research shows that a remarkable defect in synthetic diamond produced by chemical vapor deposition allows researchers to measure, witness, and potentially manipulate electrons in a manner that could lead to new "quantum technology" for information processing. The study is published in the January 31, 2014, issue of Physical Review Letters.
Normal computers process bits, the fundamental ones and zeros, one at a time. But in quantum computing, a "qubit" can be a one or a zero at the same time. This duplicitous state can allow multitasking at an astounding rate, which could exponentially increase the computing capacity of a tiny, tiny machine.
An "NV-" center can be created within a diamond's scaffold-like structure by replacing a missing carbon atom with a nitrogen atom (N)that has trapped an electron making the center negatively charged. Scientists can monitor the center's behavior and thereby provide a window for understanding how electrons respond to different conditions. The center has the potential to serve as a qubit in future quantum computers.
Electrons occupy different orbits around their atom and, by analogy, spin like the Earth. For the first time, Struzhkin and his team, led by Marcus Doherty of the Australian National University, observed what happens to electrons in these NV- centers under high-pressure and normal temperatures. Coauthor of the study, Viktor Struzhkin at the Carnegie Institution for Science, explained: "Our technique offers a powerful new tool for analyzing and manipulating electrons to advance our understanding of high-pressure superconductivity, as well as magnetic and electrical properties."
Struzhkin and team subjected single-crystal diamonds to pressures up to 600,000 times atmospheric pressure at sea level (60 gigapascals, GPa) in a diamond anvil cell and observed how electron spin and motion were affected. They optically excited the NV- centers with light and scanned microwave frequencies in a process called optically detected magnetic resonance to determine any changes. The NV- center is very sensitive to magnetic fields, electrical fields, and stress.
Until now, researchers thought that the orbits of the electrons that contribute to the defect's electronic structure and spin dynamics were localized to the area immediately surrounding the vacancy. Doherty explained: "Our team found instead that the electrons also orbit more distant atoms and that the span of their orbits contract with increasing pressure."
In addition to overturning previous beliefs about the electron orbits, the researchers found a sensitive means to measure pressure. This method can detect changes in pressure of about 10 atmospheres in one second, even up to pressures of 500,000 atmospheres (50 GPa).
"This work demonstrates that defects in diamond have great potential as quantum sensors of high pressure phenomena and, conversely, that high pressure can be employed to study the quantum phenomena of the defects," remarked Doherty.
###
This work was supported by BES/DOE, DOE-NNSA, the Australian Research Council Discovery Project, Centre of Excellence for Quantum Computation and Communications Technology, and the Alexander von Humboldt Foundation.
####
About Carnegie Institution
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
For more information, please click here
Contacts:
Viktor Struzhkin
202-478-8952
Copyright © Carnegie Institution
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||