Home > Press > Controlled Spraying Resolves Main Problems in Nanostructured Thermal Barrier Coatings
Abstract:
Iranian researchers from the Department of Materials Engineering, Malek-Ashtar University of Technology designed and optimized various parameters of nanostructured coatings and succeeded in the production of a very high-quality coating to resolve the main problems in the spraying and adhesion of nanostructured thermal barrier coatings to the sub-layer.
Thermal barrier coatings play an important role in protecting the pieces that operate at very high temperatures. When these coatings are used, the working temperature of the turbine may increase due to their very small thermal conductivity and the ability to stand thermal slopes. Therefore, higher thermodynamic efficiency and lower pollution are obtained.
In this research, the optimization of spray condition was chosen as the main objective. The researchers produced a coating with very high quality by designing and optimizing various parameters of spraying. Sub-layers made of nickel-based superalloy (Inconel 738LC) were chosen in this research. The reason for the selection was simulation at industrial condition, to the extent that the alloy is used in the production of turbine blades.
In this research, the values of adhesive strength were calculated 24.6 and 38.12 MPa for conventional yttria stabilized zirconia (YSZ) thermal barrier coatings and plasma-sprayed nanostructure, respectively. However, the bonding strength of plasma-sprayed ceramics on metallic sub-layers has been reported 15-25 MPa. Therefore, adhesive strength calculated for the two coatings have been very desirable, specially for the nanostructured coating. It shows the correct selection of parameters in plasma-spraying process.
The plan has applications in power plants, petroleum and gas industries, automobile manufacturing, steam turbines, heat exchangers, boilers, gas turbines, and the coating of all pieces that operate at high temperatures.
Results of the research have been published in Ceramics International, vol. 39, issue 8, December 2013, pp. 8805-8813.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |