Home > Press > Molecular nano-spies to make light work of disease detection
Cartoon of DNA-containing molecular hybrids in the presence of red blood cells. (Note: cells and DNA-hybrids are shown in a stylised schematic form and are not to scale) |
Abstract:
A world of cloak-and-dagger pharmaceuticals has come a step closer with the development of stealth compounds programmed to spring into action when they receive the signal.
Researchers at the University of Nottingham's School of Pharmacy have designed and tested large molecular complexes that will reveal their true identity only when they've reached their intended target, like disguised saboteurs working deep behind enemy lines.
The compounds have been developed as part of a five-year programme funded by the Engineering and Physical Sciences Research Council (EPSRC) called "Bar-Coded Materials".
The cloak each spherical complex wears is perhaps more a plastic mac: a sheath of biocompatible polymer that encapsulates and shrouds biologically active material inside, preventing any biological interaction so long as the shield remains in place.
The smart aspect is in the DNA-based zips that hold the coat in place until triggered to undo. Because any DNA code (or "molecular cipher") can be chosen, the release mechanism can be bar-coded so that it is triggered by a specific biomarker - for example a message from a disease gene.
What is then exposed - an active pharmaceutical compound, a molecular tag to attach to diseased tissue, or a molecular beacon to signal activation - depends on what function is needed.
News, events and publications
News
2014
Announcements
Press releases
Media coverage
News
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
Media Contacts
Home > News, events and publications > News > 2014 > Molecular nano-spies to make light work of disease detection
Molecular nano-spies to make light work of disease detection
Issue date:
14 January 2014
Type:
Press release
Related theme:
Healthcare technologies
inShare1
DNA Micelles in blood
Cartoon of DNA-containing molecular hybrids in the presence of red blood cells. (Note: cells and DNA-hybrids are shown in a stylised schematic form and are not to scale)
A world of cloak-and-dagger pharmaceuticals has come a step closer with the development of stealth compounds programmed to spring into action when they receive the signal.
Researchers at the University of Nottingham's School of Pharmacy have designed and tested large molecular complexes that will reveal their true identity only when they've reached their intended target, like disguised saboteurs working deep behind enemy lines.
The compounds have been developed as part of a five-year programme funded by the Engineering and Physical Sciences Research Council (EPSRC) called "Bar-Coded Materials".
The cloak each spherical complex wears is perhaps more a plastic mac: a sheath of biocompatible polymer that encapsulates and shrouds biologically active material inside, preventing any biological interaction so long as the shield remains in place.
The smart aspect is in the DNA-based zips that hold the coat in place until triggered to undo. Because any DNA code (or "molecular cipher") can be chosen, the release mechanism can be bar-coded so that it is triggered by a specific biomarker - for example a message from a disease gene.
What is then exposed - an active pharmaceutical compound, a molecular tag to attach to diseased tissue, or a molecular beacon to signal activation - depends on what function is needed.
Professor Cameron Alexander
Professor Cameron Alexander, who leads the project, says: "These types of switchable nanoparticles could be extremely versatile. As well as initial detection of a medical condition, they could be used to monitor the progress of diseases and courses of treatment, or adapted to deliver potent drugs at particular locations in a patient's body. It might even become possible to use mobile phones rather than medical scanners to detect programmed responses from later generations of the devices."
In their initial trials, the team has proved the concept works in the test tube - the switchable molecular constructs do respond as expected when presented with the right molecular signals. The group is now working hard to push their idea forwards.
An early application might be in dipstick technology - testing for specific infections in a blood or spit sample, for example. But because the polymer coating (called polyethylene glycol) is biocompatible, the researchers are hopeful that in the long run "self-authenticating medicines" based on the approach could be injected into patients, to seek out diseased tissue, and report their success.
"The key to this breakthrough has been the five-year EPSRC Leadership Fellowship awarded to me back in 2009", Professor Alexander comments. "This has provided the stability of funding to recruit and retain an outstanding team, who have been integral to realising the ideas put forward in the Fellowship. It has also given us the freedom to explore a whole range of new concepts, as well as the time needed to test our ideas to bring this and other breakthroughs within reach".
Professor Alexander's EPSRC Leadership Fellowship, ‘Bar-coded Biomaterials: Designing Self-authenticating Medicines', is valued at £1.26m over five years.
####
About Engineering and Physical Sciences Research Council
The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK.
For more information, please click here
Contacts:
EPSRC Press Office
44 01-793-444-404
Professor Cameron Alexander
University of Nottingham
Tel: 44 0115 846 7678
Copyright © Engineering and Physical Sciences Research Council
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The team’s new results have been published in Nanoscale:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||