Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Production of Hyperbranched Drug-Carrying Polymers from Citric Acid Monomers in Iran

Abstract:
Iranian researchers from Payam-e Nour University of Tabriz in association with researchers from Lorestan University succeeded in the production of biodegradable hyperbranched polymers that are compatible with human body temperature.

Production of Hyperbranched Drug-Carrying Polymers from Citric Acid Monomers in Iran

Tehran, Iran | Posted on January 11th, 2014

The polymers are made of citric acid and glycerol monomers through dense polymerization method, and they can be used as drug-carrying nanoparticles in medical purposes, specially in cancer treatment.

Since citric acid decomposes at its melting point, the polymerization of this monomer is not possible for the preparation of polymers and copolymers. Three various types of hyperbranched polymers were synthesized in this research with different ratios of citric acid and glycerol under the same conditions of temperature and time. The polymer is compatible with biological media, and it has numerous internal voids that enable it to carry drug. The presence of functional groups on the surface of the polymer results in the release of the drug to the target. The abovementioned polymers can have desirable application in the place of biological molecules.

The hyperbranched polymers can be easily synthesized with very high molecular weight by changing two important parameters of reaction time and ratio of the monomer. The polymers are able to pass through cell membrane. Similar to dendrimers, the polymers have many functional groups and internal voids, so they are considered appropriate carriers of various medical molecules such as cancer treatment medicine, including cisplatin, through physical (capsulation) or chemical (coupling) methods.

Results of the research showed that the production of hyperbranched polymer was cost-effective. Moreover, the dosage of anticancer drug capsulated with hyperbranched polymer was halved in comparison with that in free anticancer drug. Therefore, the side-effects caused by the anticancer drug reduced on healthy cells.

The latest results of the research have been published in Journal of Applied Polymer Science, vol. 129, issue 6, 15 September 2013, pp. 3665-3671.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project