Home > Press > New magnetic behavior in nanoparticles could lead to even smaller digital memories
This is a schematic representation of the antiferromagnetic coupling between a magnetic Fe3O4 soft core and a magnetic Mn3O4 hard shell. The image of an electronic high-resolution transmission microscope, superimposed on a map of electronic energy loss spectroscopy, reveals the high quality of the interface with a coherent increase between the two phases.
Credit: UAB |
Abstract:
Electronic devices such as mobile phones and tablets spur on a scientific race to find smaller and smaller information processing and storage elements. One of the challenges in this race is to reproduce certain magnetic effects at nanometre scale.
An international collaboration of scientists led by researchers from the Universitat Autònoma de Barcelona Department of Physics and the Institut Catala de Nanociencia i Nanotecnologia, and with the participation of the Universitat de Barcelona, has been able to reproduce in particles measuring 10 to 20 nanometres a magnetic phenomenon of great importance in magnetic devices: the antiferromagnetic coupling between layers.
This phenomenon appears when coupling layers of materials with different magnetic properties, which allows controlling the magnetic behaviour of the whole device. This property has very important technological applications. For example, it forms an important part of data reading systems found in hard drives and in the MRAM memories of computers and mobile devices.
Researchers have managed for the first time to reproduce this phenomenon in nanoscopic materials, measuring a mere few tens of atoms in diameter. They managed to do this by using iron-oxide particles surrounded by a thin layer of manganese-oxide and vice versa: manganese-oxide particles covered by a layer of iron-oxide. The discovery provides an unprecedented control of the magnetic behaviour of nanoparticles, since it permits controlling and easily adjusting their properties without having to manipulate their shape or composition, solely by controlling the temperature and the magnetic fields surrounding it.
"We've been able to reproduce a magnetic behaviour not previously observed in nanoparticles, and this paves the way for miniaturisation up to limits which seemed impossible for magnetic storage and other more sophisticated applications such as spin filters, magnetic codifiers and multi-level recording", explain Josep Nogués, ICREA research professor, and Maria Dolors Baró, professor of Applied Physics.
###
The research, published today in Nature Communications, included the participation of professors Maria Dolors Baró and Santiago Suriñach from the Department of Physics of the UAB; ICREA research professor Josep Nogués, from the Department of Physics of the UAB and ICN2; researchers from the Department of Inorganic Chemistry and from the Department of Electronics at the University of Barcelona (UB); researchers from the Complutense University of Madrid; the Università degli Studi di Firenze, Italy; the St. Petersburg Nuclear Physics Institute, Russia; the Stockholm University, Sweden; the NCSR in Greece; the Oak Ridge National Laboratory, USA; the Miami University, Ohio, USA; and the Argonne National Laboratory, USA.
####
For more information, please click here
Contacts:
Dolors Baró
34-935-811-657
Copyright © Universitat Autonoma de Barcelona
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||