Home > Press > Simple, Cost-Effective Method Found for Production of Manganese Oxide Nanopowder
Abstract:
Iranian researchers from the Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, succeeded in the production of manganese oxide nanopowder through a simple, cost-effective and environmental-friendly method.
The product has wide applications in petrochemical industries and battery fabrication.
Taking into consideration the wide applications of the products, researchers looked for a simple and cheap method in this research to produce a special type of manganese oxide. They also investigated the oxidation activity of water in the presence of the produced manganese oxide.
According to Dr. Mohammad Mehdi Najafpour, one of the researcers of the plan, the majority of the methods to produce manganese oxide require surfactant organic solvents and high temperature conditions. However, simple methods have been developed, which are mostly based on the use of high temperature in the production of common metal oxides.
"It was turned out in this research that some cheap compounds of manganese can be degraded to manganese nano-oxides in the presence of humidity at temperatures around 100°C or even less," he added.
The researchers found out that manganese nano-oxides start to form after a few hours when a thick solution of manganese nitrate (II) is placed at a temperature of 70-90°C.
Results of the research showed that manganese nano-oxides produced in the presence of various oxidants was able to oxidize water to oxygen, and alkenes to epoxides. The rate and efficiency of the reactions showed significant increase in comparison with samples at micrometric scale. Reduction in the size of nanoparticles can be considered the main reason to this fact.
Results of the research have been published in details in Dalton Transactions, vol. 41, issue 36, July 2012, pp. 11026-11031.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |